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MODELING PH CHANGES AND ELECTRICAL CONDUCTIVITY 
IN SURFACE WATER AS A RESULT OF MINING ACTIVITIES

Purpose. To develop comprehensive models for predicting the pH and electrical conductivity of surface water in Maiganga coal 
mine and environs affected by mining activities.

Methodology. The research utilizes a combination of in-situ measurement, laboratory analysis, modeling technique using An-
sys Workbench and Linear Regression for predicting the content of pollutants. In-situ measurement/data collection in the up-
stream and downstream were carried out to evaluate the potential impact of mining activities on surface and ground water quality. 
Electrical conductivity and pH were measured on the samples that were collected using Oakton 5/6 pH meter and TDS/EC meter.

Findings. According to the results, the regression statistics model of pH and electrical conductivity (EC) shows that the predicted 
values have a pH range of 4.7–7.05 and a mean pH value of 5.5. In contrast, while the EC ranges from 454.52 to 2,720.68 µs/cm (EC) 
with a mean value of 905 µs/cm of the downstream flow which is completely dependent on the mine inlet (pH-in and EC-in). The 
findings show a direct correlation between surface water pH, electrical conductivity, and mining activities in the Maiganga coal mine 
area and their detrimental effects on the ecosystem and water quality.

Originality. The results were obtained directly from the mine site during field visit and can be compared to data from active coal 
mine sites.

Practical value. The detrimental effect of the results of mining activities can be controlled if monitoring sensors are introduced 
at mines’ effluent outlet to alert the mine management of possible danger in real time.
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Introduction. Toxic effluent released by mining operations 
around the world has negatively impacted the surrounding ar-
ea’s surface and groundwater quality, as well as the environ-
ment surrounding the operation itself. The pH and electrical 
conductivity of surface water are crucial parameters that pro-
vide valuable information about water quality and the potential 
effects of mining activities [1]. Monitoring and modeling these 
parameters can aid in understanding the environmental impact 
of mining operations and facilitate effective water management 
strategies [2]. Coal mining involves various processes, such as 
excavation, transportation, and waste disposal, which can in-
troduce pollutants into nearby surface water bodies. These pol-
lutants can alter the chemical composition of water, affecting 
its pH and electrical conductivity [3]. Deviations from the 
natural pH and electrical conductivity levels can harm aquatic 
ecosystems, posing risks to both aquatic ecosystems and hu-
man populations that rely on these water sources [4].

pH represents the acidity or alkalinity of water and is mea-
sured on a logarithmic scale ranging from 0 to 14, with 7 being 
considered neutral. Changes in pH can influence the solubili-
ty, mobility, and toxicity of chemicals in water [5]. Electrical 
conductivity, on the other hand, measures the ability of water 
to conduct an electrical current and is related to the presence 
of dissolved ions, including salts and other conductive sub-
stances. Elevated electrical conductivity levels can indicate the 
presence of pollutants or dissolved solids in water [6].

Adeyemo, et al. [7] developed a model for predicting the 
electrical conductivity of surface water in mining areas using 
input parameters such as pH, temperature, and total dissolved 
solids. The results showed that the model had a high accuracy 
in predicting surface water pollution’s pH and electrical con-
ductivity from gold mining activities. The model used input 
parameters such as total suspended solids, pH, and electrical 
conductivity to predict surface water’s pH and electrical con-
ductivity. The results showed that the model had a high accu-

racy in predicting the pH and electrical conductivity of surface 
water pollution from gold mining activities.

To effectively manage and mitigate the impact of mining 
activities on surface water quality, it is crucial to develop mod-
els that can accurately predict the pH and electrical conductiv-
ity levels based on various influencing factors [8]. These fac-
tors may include the proximity of mining sites, the nature and 
extent of mining operations, the presence of specific pollut-
ants, and the area’s natural hydrological and geological char-
acteristics [9].

By modeling surface water’s pH and electrical conductiv-
ity, it becomes possible to identify the dominant factors con-
tributing to water quality variations, predict potential water 
quality changes under different scenarios, and design appro-
priate mitigation measures to minimize environmental harm. 
Such models can serve as valuable tools for environmental 
monitoring, regulatory compliance, and decision-making 
processes related to mining activities. Hence, there is a need 
for laboratory modelling of pH and electrical conductivity of 
surface water from Maiganga Coal Mine and its implication 
on the environment.

Study area. Geographical location. The study area is locat-
ed in Akko Local Government Area of Gombe State and 
bounded by Latitudes 11°07′46.44′′E – 11°10′11.72′′E” and 
Longitude 9°57′57.85′′N – 9°59′41.08′′N (Fig. 1).

The study area covers an area of 14.48 km2 and is accessible 
by a major road from Gombe town to Kumo – Billiri town 
while secondary road from Kumo to the Maiganga to access the 
mine. Minor roads and footpaths link the various villages, set-
tlements, and farmlands. The drainage pattern in Maiganga and 
its environs shows a dendritic pattern as can be seen (Fig. 2).

Methodology. Sample collection. Baseline data of Maiganga 
Coal mine was reviewed before carrying out in-situ (Fig. 3) mea-
surement of physical parameters of surface water such as pH, 
Electrical Conductivity (EC), TDS and Temperature depending 
on availability within the coal mine and along the drainage/river 
channels using UNICEF standard procedure [10].
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Laboratory Modelling.Samples were first homogenized to 
form a composite or representative sample [11] and control 
samples were kept for comparison of the analyzed parameters. 
In order to get rid of other interference elements and matrix 
impacts [12], it was vital to choose and refine a digesting pro-
cess for breaking down organic components and to transform 
the analyte into a form appropriate for analysis.

Modeling. Physical parameters were measured in-situ for all 
samples using an Oakton 5/6 pH/temperature meter and a TDS/
EC meter. These parameters were temperature, total dissolved 
solids (TDS), electrical conductivity (EC), and pH [13]. A good 
understanding of fluid dynamics and contaminant transport 
principles to accurately simulate and interpret the results using 
Ansys Workbench 16.2 was observed in the following steps [14].

Geometry Creation: A geometry was created in ANSYS De-
sign Modeler first by using the “Sketching” tab and selecting 
the appropriate sketching plane or face to create the geometry 
that can take care of the physical boundary of the drainage 
from the mine and upstream to show their reaction at the con-
fluence before flowing downstream. Boundaries were created; 
two inlets were designed for the upstream and mine inlet while 
the third was an outlet for the downstream end. Other surfaces 
were left as wall in the geometry.

Mesh Generation: Generated a mesh that discretizes the 
geometric domain into small elements, allowing for fluid flow 
and contaminant transport calculations. The mesh was created 
using the default Ansys mesh generation software. A mesh of 
507 nodes and 401 elements was automatically generated.

Setup: Set up the fluid flow simulation using the appropri-
ate solver in Ansys Workbench, such as Ansys Fluent or Ansys 
CHF defined the boundary conditions, fluid properties, and 
any applicable fluid flow models. Ansys Fluent was used for 
the simulation and the setup was as follows:

Model: Viscous Standard K-Omega was used to capture 
the turbulence.

Materials: Water was selected as the fluid.
Boundaries Conditions: Boundary conditions in Ansys 

Workbench refer to the constraints or input conditions applied 
to a computational fluid dynamics model to simulate real-
world operating conditions and obtain accurate results. These 
conditions define how the model interacts with its surround-
ings or how external forces are applied to the model. Mass 
flow-inlet was used for both the Mine inlet and Stream inlet, 
while Pressure outlet was used for the outlet (downstream). 
User defined scalars were used to represent the pH and Elec-
trical Conductivity (EC) at the inlet.

Solution: SIMPLE was selected as the scheme for the sim-
ulation since it involves only simple scalar transport. Default 
solution control was used in the simulation. For the continu-
ity, the residual for continuity was changed to 10-8 to enable 
the simulation run for accuracy.

Solution Initialization: Standard Initialization was used 
computed from the stream inlet.

Run Calculation: 1,000 iteration was inputted to allow the 
data to run smoothly before clicking on the calculation tab.

Post-Processing and Analysis: Analyze the simulation re-
sults using the post-processing tools Ansys Workbench (Con-
tour and XY Solution tool) provided. This involves visualizing 
the contaminant concentration, examining flow patterns, and 
evaluating the impact of pollution on specific locations of in-
terest along the flow direction.

Linear regression. A statistical method for simulating the 
linear relationship between the dependent variables and one or 
more regressors is called linear regression (LR). Using the or-
dinary least squares method, the linear regression is calculated 
to have the minimum possible sum of squares of the difference 
between the observed and predicted values in the current study 
[15]. The m-predictor linear regression model is displayed in 
Equation (1). The dependent variable in this equation is de-
noted by y, the independent variable (regressor) by xj, the con-
stant/intercept is βj, the regression coefficient linked to each 
regressor is βj, and the random error term is e.

0 ( .)
m

j j
j l

y x
-

= β β + e+∑

Several statistical criteria need to be examined while creat-
ing a linear regression model in order to determine the model’s 

Fig. 1. Satellite image of the study area showing excavated land 
ponds and sample points within the coal mine (Google 
Earth 2023)

Fig. 2. Digital Elevation model and showing the drainage pat-
tern of the study area

Fig. 3. Water samples collection points within and around Mai-
ganga Coal Mine
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fitness for prediction [16]. The percentage of the endogenous 
variable’s change that is described by the external variables is 
known as the coefficient of determination (R2) [17]. Though 
the statistical significance of the R2 depends on the degrees of 
freedom, a high R2 does not necessarily indicate that the re-
gression is appropriate for making predictions.

Results and Discussion. The results of pH, Electrical Con-
ductivity and Total Dissolved solids of the water samples collected 
in the study area are presented in Table 1, all were collected with-
in the ambient temperature [18]. Table 2 descriptive statistics and 
the graphical presentation of the data are in Figs. 3 to 7.

Modeling Using Ansys Workbench. Ansys Workbench is a 
powerful software platform that simulates and models various 
engineering and scientific problems. While it is primarily 
known for its structural, fluid dynamics, and electromagnetics 
simulations capabilities, it can also be used for modeling sur-
face water pollution.

pH Simulated Data: Results of analysis and pH modeling 
from the mine effluent shows that the effluent coming from the 
mine is released directly without passing through the wetland, 
which could have an adverse effect on the downstream flow. 
Within the mine, the value of pH ranges from 1.5 to 2.3 which 
model with the upstream of pH value of 6.4 will have a conflu-
ence of 4.6, which is quite acidic and not good, which implies 
that the water is not fit for human and animal consumption. 
Mine drainage channel also had considerably low pH of 2.9–3.1 
and, when simulated with the upstream gave a pH of 5.2 (weak 
acid) and still not good for drinking according to local and world 
standards [19–21]. Table 3, Figs. 4, 5 shows different pH models 
of measured points within and around the coal mine.

When the pH of water goes below 5.5 or rises above 8.5, 
harmful effects are evident. Coal is often associated with sul-
phur and other associated minerals; therefore, the acidic na-
ture of the surrounding waters might be influenced by the re-
action between sulphur and water to form sulphuric acid. As 
can also be observed in a certain well (sample S6), the acidic 
effect of the acidic water may have been offset by the composi-
tion of the surrounding soil, dissolved salts, and carbonates.

Electrical Conductivity Simulated data: Results of analysis 
and Electrical Conductivity (EC) modeling from the mine ef-
fluent shows that if the effluent coming from the mine is re-
leased directly without passing through the wetland, it will also 
have an adverse effect on the downstream. Within the mine the 
value of EC ranges from 802 to 6,982 µs/cm (Fig. 6 and Ta-
ble 3) which when simulated with the upstream flow of value 
594 µs/cm had a concentration of 3,523 at the confluence 
3,523; this is not acceptable by the global standard as this will 
have a lot of dissolved elements (Heavy metals inclusive) and is 
not good for human and animal consumption. Mine drainage 
channel also had a considerable low EC of 920–1,056 µs/cm 
and when simulated with the upstream of 594 µs/cm gave an 
EC 750 µs/cm at the confluence, which good for drinking ac-
cording to local and international standards [18, 19, 21]. Other 

Table 1
In-situ reading of physico-chemical parameters collected from different locations

S/N Parameters S1 S2 S3 S4 S5 S6 S7 S8 Nigerian Standard for 
Drinking water [19]

WHO 
[20]

1 pH 2.3 1.5 2.9 5.5 3.5 8.4 3.2 4.3 6.5–8.5 6.5–8.5

2 TDS 398 3,491 458 300 454 85 514 389 500 300

3 EC 802 6,982 920 604 908 170 1,028 779 1,000 1,000

Table 2
Descriptive statistics for water in Maiganga Coal Mine and 

Environs

Descriptive Statistics

Parameters N Minimum Maximum Mean Std. 
Deviation

pH 8 1.5 8.40 3.95 2.1686

TDS 8 85.0 3,491.0 761.13 1,110.96

EC 8 170.0 6,982.0 1,524.13 2,221.20

Valid N 
(listwise)

8 – – – –

Table 3
Response of downstream from the result of the mine inlet 

(pH & EC) from modeling in Ansys Workbench using Fluid 
Fluent tool
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Ph-in – Ph-out EC-in – EC-out

1 1.5 6.4 4.76 1028 596 756

2 2.3 6.4 5.04 779 596 590

3 2.9 6.4 5.24 170 596 450

4 3.2 6.4 5.34 908 596 700

5 3.5 6.4 5.44 604 596 599

6 4.3 6.4 5.7 920 596 697

7 5.5 6.4 6.1 6,982 596 2,720

8 8.4 6.4 7.05 802 596 665

Fig. 4. Simulated result of pH conditions in water released di-
rectly from the mine to the main stream

a

b
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simulated data from different sample points are visible in Fig. 5 
and their possible outcome can be viewed.

Higher EC values (1,028 and 6,982 µs/cm) were obtained 
from the mine pond and “yellow boy” respectively, implying 
that there are more dissolved elements in the water resulting 
possibly from the reaction of acidic water and surrounding 
rocks to form complexes. Elevated concentrations of these 
contaminants will result in increased conductivity, therefore 
determining the electrical conductivity of water is highly ben-
eficial for industrial and environmental uses. It is imperative to 
note that water quality based on the EC values within the mine 
is not fit for domestic purposes according to WHO standards 
and Nigeria’s standard for drinking water [19]. This might also 
not be suitable for industrial purposes in view of the exces-
sively high values of EC.

Linear Regression : The adjusted R-square value of 1.000 in 
Tables 4 (pH) and 5 (EC) above indicates the independent 
variables (predictors); For example, the mine inlet utilized in 
this model demonstrates that the predictor is responsible for 
100 % of the overall variation (downstream – Outlet). It indi-
cates that the regression model can account for all of the de-
pendent variable’s fluctuation [22]. According to Achyut [23], 
the regression model is adequately explained by the adjusted R 
square, which is more than the benchmark value of 0.5. Table 
4 demonstrates that the collinearity statistics show that all tol-

erance values exceed the literature benchmark, indicating that 
the eight independent variables are independent of one an-
other and confirming the suitability of carrying out the regres-
sion analysis.

Tables 4 and 5 of Anova are both significant since p-value/
Sig value is less than 0.05. In the tables, it is 0.000. The F-ratio 
indicates how well the model fits the variable while taking into 
account the model’s inherent imperfection. An F-ratio yields 
efficient model with a value greater than 1. The above table 
shows 75,801.013 for pH and 131,201.005 for EC respectively, 
which is good. For the reason that the significant value of 
0.000 is less than the permissible value of 0.05, the coefficients 
in the Tables demonstrate the substantial change in the depen-
dent variable caused by anthropogenic activities. The pH and 
EC rate will rise in response to a 1 % increase in mining activ-
ity. Thus, the data indicates that there is a strong positive cor-
relation between mining operations and the pH and EC con-
centration downstream.

It appears that the error terms are normally distributed 
based on the residuals’ normal probability plot. The residuals’ 
departure from the normal line is depicted in Figs. 6 and 7. 
The scatters should lie on or very near the normal distribution 
line in order for the Standardized residuals to be normally dis-
tributed. The residuals’ scatters essentially lie linearly on the 
normal distribution line in Figs. 6 and 7 (pH and EC, respec-

Fig. 5. Simulated data of various pH conditions measured in-situ in and around Maiganga Coal showing its interaction as it mixes with 
the upstream of pH -6.4 and the resultant outflow downstream in no preferred order
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tively), suggesting a normal distribution of residuals [24]. The 
graph above demonstrates that there is not a significant resid-
ual deviation from the normal line. It is also evident that the 
data set passes through the origin. Therefore, it suggests that 
the residuals have a roughly normal distribution. As a result, it 
can be said that the observed data has a normal distribution.

Effect on Water Quality: The main objectives following the 
in-situ assessment of pH and EC is to determine the surface 
and ground water quality and its impact on the environment. 
Preliminary investigation shows that the pH was slightly alka-
line (7.8–8.6) within the surrounding water bodies before the 
inception of the mine. However, with the commencement and 
progression of mining activities, the pH values of surface water 
within the mine now range from 1.5 to 5.4. According to the 
World Health organization [18] and Nigerian Standard for 
Drinking water quality (NSDWQ) [19], the range of desirable 
pH values of water for drinking purposes is 6.5–8.5. In this 
study, only water from the resettled Maiganga Village well 
south-east of the mine had a pH of 8.4 but the mine drainage 
had a pH of 3.2. The water pH in the mine drainage was far 
above the maximum permissible limit for drinking water qual-
ity, it is not good for drinking. Also, the pH is not within the 
range for optimal plant growth and productivity because a pH 
range of 5.5–6.5 is optimum for plant growth [25]. Other than 
for dairy cattle, the ideal pH range for animal water is 5.5 to 
8.3. Extremely alkaline water can lower feed/water intake, in-

duce diarrhea, disturb the digestive system, and have a nega-
tive feed conversion Other than for dairy cattle, the ideal pH 
range for animal water is 5.5 to 8.3. Extremely alkaline water 
can lower feed/water intake, induce diarrhea, disturb the di-
gestive system, and have a negative feed conversion [26], 
therefore, the water within and around the mine though used 
by cattle for drinking is however, not suitable.

Electrical Conductivity (EC) within the mine drainage 
channel ranged from 802 to 1,056 µs/cm, rendering it unfit for 
domestic purposes and animal consumption. In addition, the 
cloudy nature of the water renders it unfit for drinking and 
other uses.

Effect on Environment: Low pH levels in bodies of water, 
such as lakes, rivers, and oceans, can harm aquatic organisms 
[27]. Many aquatic species, including fish, amphibians, and 
invertebrates, have specific pH tolerances. Acidic conditions 
can disrupt their physiological functions, impair growth, re-
production, and survival [28]. Low pH can also release toxic 
metals like aluminum and mercury from sediments harming 
aquatic life [29].

Biodiversity Loss: The acidification of ecosystems can dis-
rupt ecological balances and lead to biodiversity loss. Acidic 
conditions may favor certain organisms that are more tolerant 
of low pH, while other species decline or disappear. This can 
result in shifts in species composition and disrupt the intricate 
web of ecosystem interactions [30].

Fig. 6. Simulation result of Electrical Conductivity if water flow is considered directly from the mine
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Table 4
A model summary for pH when released from the mine (data generated from Table 3)

Adjusted R-Square
Model R R Square Adjusted R Square Std. Error of the Estimate

1 1.000a 1.000 1.000 0.00689
a. Predictors: (Constant), Mine (Inlet)
b. Dependent Variable: Downstream (outlet)

Anovaa

Model Sum of Squares df Mean Square F Sig.
1 Regression 3.602 1 3.602 75,801.013 0.000b

Residual 0.000 6 0.000 – –
Total 3.602 7 – – –

Coefficientsa

Model
Unstandardized Coefficients Standardized Coefficients t Sig.

B Std. Error Beta
1 (Constant) 4.277 0.005 – 801.710 0.000

Mine (Inlet) 0.331 0.001 1.000 275.320 0.000
a. Dependent Variable: Downstream (outlet)

Residuals Statisticsa

Minimum Maximum Mean Std. Deviation N
Predicted Value 4.7733 7.0558 5.5838 0.71735 8
Residual -.01332 0.00510 0.00000 0.00638 8
Std. Predicted Value -1.130 2.052 0.000 1.000 8
Std. Residual -1.933 0.740 0.000 0.926 8
a. Dependent Variable: Downstream (outlet)
b. Predictors: (Constant), Mine (Inlet)

Table 5
A model summary for EC when released from the mine (data generated from Table 3)

Adjusted R-Square
Model R R Square Adjusted R Square Std. Error of the Estimate

1 1.000a 1.000 1.000 5.397
a. Predictors: (Constant), Mine (Inlet)
b. Dependent Variable: Downstream (outlet)

ANOVAa

Model Sum of Squares df Mean Square F Sig.
1 Regression 3,822,141.208 1 3,822,141.208 131,201.005 0.000b

Residual 174.792 6 29.132 – –
Total 3,822,316.000 7 – – –

a. Dependent Variable: Downstream (outlet)
b. Predictors: (Constant), Mine (Inlet)

Coefficients

Model
Unstandardized Coefficients Standardized Coefficients t Sig.

B Std. Error Beta
1 (Constant) 397.966 2.367 – 168.157 0.000

Mine (Inlet) 0.333 0.001 1.000 362.217 0.000
a. Dependent Variable: Downstream (outlet)

Residuals Statisticsa

Minimum Maximum Mean Std. Deviation N
Predicted Value 454.52 2,720.68 905.00 738.932 8
Residual -7.024 10.047 0.000 4.997 8

Std. Predicted Value -.610 2.457 0.000 1.000 8
Std. Residual -1.301 1.861 0.000 0.926 8
a. Dependent Variable: Downstream (outlet)
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Conclusion. The activities of coal exploitation in Maigan-
ga area had initiated the comparative modeling using Ansys 
Workbench and water quality analysis between the two ana-
lyzed parameters (pH and Electrical Conductivity (EC)) 
which indicates mine effluent influence. The high values of 
pH and EC gotten from the flowing water channels shows 
that the surface water source of pollution is primarily from 
the Mine.

From the regression statistics model of pH and EC, the 
predicted values have a minimum value of 4.7 pH and 
454.52 µs/cm (EC), a maximum value of 7.05 pH and 
2,720.68 µs/cm (EC) and a mean of 5.5 pH and 905 µs/cm 
(EC) for the downstream flow which is completely dependent 
on the mine inlet (pH-in and EC-in). It is important to note 
that the primary driver of the low pH in the environment is 
anthropogenic activities (mining). Reducing these sources of 
acidity through pollution control measures and sustainable 
practices is crucial for mitigating the harmful effects of low 
pH on the environment.

Overall water quality has been degraded by the mining ac-
tivities ongoing within the community. Therefore, continuous 
water monitoring of water quality is required to identify neces-
sary action to be taken for mitigation.

With the models of this study, stakeholders can assess the 
potential risks associated with mining operations, design ef-
fective monitoring and control strategies, and develop mitiga-
tion measures to protect water resources and minimize envi-
ronmental harm. This will go a long way in enhancing the 
Sustainable development goals (Goal No. 3; Good Health and 
Well-being, Goal No. 6; Clean water and sanitation, Goal 
No. 7; Affordable and Clean Energy and Goal No. 14; Life on 
Land) [31, 32].
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Мета. Розробити комплексні моделі для прогнозу-
вання рН та електропровідності поверхневих вод у ву-
гільній шахті Майганга та на прилеглих територіях, що 
постраждали від гірничої діяльності.

Методика. У дослідженні використовується поєднан-
ня вимірювань на місці, лабораторного аналізу, методу 
моделювання з використанням комплексу Ansys Work-
bench і лінійної регресії для прогнозування вмісту за-
бруднюючих речовин. Вимірювання на місці/збір даних 
у верхній і нижній частинах течії були проведені з метою 

оцінки потенційного впливу гірничих робіт на якість по-
верхневих і підземних вод. Електропровідність і pH ви-
мірювали на зразках, що були зібрані за допомогою pH-
метра Oakton 5/6 і приладу для вимірювання загальної 
мінералізації води/електропровідності (TDS/EC-метра).

Результати. За результатами, модель регресійної ста-
тистики pH та електропровідність (ЕП) показує, що про-
гнозовані значення мають діапазон pH 4,7–7,05 і середнє 
значення pH 5,5. Навпаки, EП коливається від 454,52 до 
2720,68 мкс/см із середнім значенням 905 мкс/см потоку 
вниз за течією, що повністю залежить від входу до шахти 
(вхідний pH і ЕП на вході). Отримані дані показують 
пряму залежність між рівнем рН поверхневих вод, елек-
тропровідністю та гірничодобувною діяльністю в районі 
вугільної шахти Майганга та її шкідливим впливом на 
екосистему та якість води.

Наукова новизна. Результати були отримані безпосе-
редньо на шахті під час польового візиту і їх можна по-
рівняти з даними з діючих вугільних шахт.

Практична значимість. Негативний вплив результатів 
гірничодобувної діяльності можна контролювати, якщо 
встановити датчики моніторингу на виході шахтних сто-
ків, щоб попередити керівництво шахти про можливу не-
безпеку в режимі реального часу.

Ключові слова: шахта Майганг, pH, електропровід-
ність, прогнозне моделювання, поверхневі води, екологічний 
моніторинг
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