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MINERAL RESOURCE ASSESSMENT THROUGH GEOSTATISTICAL
ANALYSIS IN A PHOSPHATE DEPOSIT

Purpose. The selection of an appropriate variographic model is crucial in geostatistics to obtain accurate estimates of mineral
reserves. The aim of this work is to develop a reserve estimation tool using a geostatistical approach.

Methodology. The geostatistical approach is based on selecting the most representative variographic models for the studied
variables. The model selection is done by applying a cross-validation procedure leave-one-out (LOOCV). LOOCYV is a resampling
technique used in statistical analysis and machine learning to estimate the generalization error of a model and compare the perfor-
mance of different models. The studied variables are then estimated using ordinary kriging.

Findings. The application of the proposed approach has resulted in satisfactory results in terms of dispersion of grades and
thicknesses of mineralized layers in a phosphate deposit. To evaluate the quality of the adjustment models obtained, efficiency
factors such as Nash-Sutcliffe, and RMSE (Root Mean Square Error), were employed. These factors provide quantitative mea-
sures of the agreement between the observed and predicted values. The NSE (Nash-Sutcliffe efficiency) and RMSE (root mean
square error) values of 0.572 and 6.599, respectively, indicate a better fit and greater accuracy of the adjustment models. The ac-
curacy and efficiency criteria of the studied variables have acceptable values, with a mean square error (MSE) of 1.54 - 1077.

Originality. The combination of the least squares and LOOCYV methods in the geostatistical analysis leads to improved estima-
tion precision, greater reliability in representing the spatial variability of the parameters, and enhanced confidence in the validity
of the adjustment models.

Practical value. The development of a computer code for this geostatistical approach provides a practical tool for decision-makers
to use in the management and exploitation of mining sites. Overall, this study has contributed to the advancement of geostatistical

techniques and their application in the mining industry.

Keywords: Bled el Hadba deposit, cross validation (LOOCYV), geostatistics, kriging, mineral reserves

Introduction. A mining project is a complex system in-
volving any geological, geotechnical, metallurgical, mining,
environmental, economic, legal and social variables. All these
variables must be estimated in order to provide a database for
evaluating the mining project [1].

The success of a mining project depends on accurately rec-
ognizing the subsoil, which involves managing the risks of
geological uncertainty. However, accurately estimating the
grades of minerals within a deposit is crucial in the mining in-
dustry and is used in several stages of mining, from exploration
to exploitation.

Resource estimation is an essential step in feasibility studies
and mine planning. Although advanced methodologies exist,
they may not be suitable for every complex geological environ-
ment. Various researchers have proposed grade prediction
models using techniques such as inverse distance weighing,
kriging, and stochastic simulation [2]. Nevertheless, selecting
the appropriate methodology for resource estimation in a min-
ing project depends on various factors such as the complexity
of the geological environment, data availability, and the level of
accuracy required. In any case, the accuracy and reliability of
the grade estimates are critical in determining the economic
feasibility of a mining project, and therefore, the selection of
the appropriate methodology must be carefully evaluated.
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Detailed and extensive exploration operations are required
to obtain geological models, which are used to accurately de-
scribe the ore body and estimate mineral reserves [3].

The assessment of mineral resources often requires the use
of quantitative approaches, especially in creating a geological
model. This model serves as the foundation for all mining ac-
tivities such as mine planning, design, production scheduling,
and development. It also plays a significant role in investment
decisions [4].

In the present study, predictive data mining algorithms
were applied to the Bled El Hadba deposit (Eastern Algeria)
[5], to predict the probability of encountering ore in estima-
tion maps, and to estimate the mineral reserves of the main
layer of phosphate ore (the median).

Previous studies on the Bled El Hadba deposit showed sig-
nificant differences in reserve estimation results. The first
study estimated reserves of approximately 103 million tons,
while the second study estimated reserves of around 133.6 mil-
lion tons for the same site.

The aim of this article is to develop a reserve estimation
tool using a geostatistical approach [6], to improve the quality
of the estimation [7]. The tool includes an adjustment and a
validation step of variographic models, which is a crucial phase
integrated into the developed tool structure. A leave-one-out
(LOOCYV) cross-validation procedure [8] is used to system-
atize the treatment of variographic models and to select the
most representative variograms.
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Leave-one-out cross-validation (LOOCYV) is a resampling
technique used in statistical analysis and machine learning for
model selection and validation [8]. The LOOCV method in-
volves splitting the dataset into training and testing subsets,
where in each iteration of the process, one sample from the da-
taset is selected as the testing subset, and the remaining samples
are used as the training set. The model is trained on the training
set and evaluated on the testing set, and the process is repeated
for all samples in the dataset [8]. This results in a set of perfor-
mance measures that can be averaged to give an estimate of the
model’s accuracy [9]. The LOOCV method is useful for esti-
mating the generalization error of a model, which is the expect-
ed error when the model is applied to new, unseen data. It is also
commonly used for comparing the performance of different
models, as well as for selecting the optimal model parameters.
In the case of reserve estimation for the Bled El Hadba phos-
phate deposit, LOOCYV was used to select the best variographic
models to be used for kriging. By systematically testing different
variographic models using LOOCYV, we were able to identify the
most representative variograms for accurate reserve estimation.

Despite the many benefits of LOO, scaling this approach to
large datasets can be challenging [10]. The naive approach of
LOO involves computing n posteriors, which can become com-
putationally expensive in situations where n is large [9]. Even
the computation of a single posterior can be time-consuming,
making it difficult to scale the approach to large datasets.

The current study holds both technical and economic signifi-
cance by providing a sound evaluation of mining reserves, which
in turn contributes to the enhancement of grade control, efficient
management of extraction process, and effective ore processing.

Material and methods. Geological setting. The Bled El
Hadba deposit is located 14 km south-east of Bir El Ater and
6 km from the Algerian-Tunisian border. The area of the zone
recognized by exploratory boreholes is approximately 2.9 km?.

Structurally, the Bled El Hadba area constitutes the west-
ern flank of the antiform structure of Jebel Zrega, whose crest

line forms the Algerian-Tunisian border. This mining area is
located symmetrically with respect to the southern flank of
Jebel Onk (Djemi Djema and Kef Es Sennoun), whose phos-
phate layer is on average about 40 m thick [11].

The wall and roof structures of the phosphate bundle
(Fig. 1) illustrate well the monoclinal dip, towards the West of
the phosphate series. Several horizontal setbacks, NW-SE, are
cartographically visible, but they do not cause significant
changes in the phosphate layer geometry [5].

The phosphate deposit geology is relatively simple; it was
described by Dussert (1924). The geological map of the region
shows the phosphate layers of the Thanetian age, under the
Ypresian flint limestones and the Miocene sands (Fig. 1),
plunge in a monocline fashion and under a gentle slope of 6 to
10° towards the West and the North-West, this dip becomes
more accentuated towards the South of the deposit (Fig. 2) [5].

The used approach description. In order to facilitate and im-
prove the mineral reserves estimation, a geostatistical ap-
proach is used [7]. This approach involves several steps de-
scribing the kriging interpolation process, associated with an
adjustment-validation coupling [8].

A MATLAB calculation code is implemented to automate
the processing and improve the reserve calculation procedure
performance.

Adjustment method. The least squares method is used for
the adjustment by comparing the experimental data with a
mathematical model supposed to describe these data [12].

In the case of nonlinear least squares it is about minimiz-
ing the function

{gianlg(x) = %r(x)'r(x) = %;I; (x)?, m=>n, (1)

with r(x) i=1,..., m, is a nonlinear functional defined over R",
where r(x) is the vector of residuals dependent on the para-
meters x.
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Fig. 1. Geological map of the structure of the Bled El Hadba phosphate deposit (Eastern Algeria) 5]
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Fig. 2. Geological Profile oriented east—west |5]:

E4 10

1 — Miocene detrial deposits (sands and clays); 2 — Miocene basal conglomerate; 3 — Whitish organic limestone, strongly gypsum; 4 — Lumichel-
lic limestone, residually phosphate, with flint nodules and quartz geodes; 5 — Phosphate with nodules of flint, and debris of limestone and marl;
6 — Gypsum marl, whitish, with flint nodules, residually phosphate; 7 — phosphated layer of the higher thanetian (CS + CB: lumachellic phosphate
with quartz geodes); 8 — CM phosphated layer of the higher thanetian; 9 — Pelitic marl bedded, residually phosphate; 10— Coprolithic phosphate,

marly cement; 11 — Well-logs (exploratory boreholes)

With
ri(x):yi_f(l[ax)’ i= ]’“" m,

where f{#;, x) is a nonlinear function (the model) with ti the
independent variables and x € R" the parameter vector to be
estimated.
In order to write the quadratic model for the minimization
of equation (1) we need the first and second derivatives of g(x).
The first derivative is written

VE(x) = 1(x)- Vr(x) = r(x)r(x), 2)
il
with
or(x) or;(x)
ox;, ... 0x,
Vr(x)= : : ,
or,(x) ... 0r,(x)
ox, ox,,
where Vr(x) is the Jacobian matrix.
or,(x)
ox,
The vector Vr(x)= corresponds to the line 7/ of
or,(x)
ox

n

the Jacobian matrix.
The second derivative is written as

V2g(x) = D (Vr(x)-VE(x) +1,(x)-V2r(x)) =
in (3)
=Vr(x)Vr(x)+S(x),

m
with S(x)=35(x)-V2r(x).
i=l1
The Gauss-Newton method uses an approximation of the
matrix of second derivatives (3) omitting the term S(x). As S(x)
is composed of a sum of terms r,(x)V?r,(x), this simplification
is justified in a situation where the residuals 7,(x) are small.
Cross validation LOOCYV. The Leave-one-out Cross-Vali-
dation (LOOCYV) method [8, 9] is based on dividing the data set
under study into two parts, an observation pair for validation,
i.e. (x|, y;) and the rest of the samples (x,, ,), ..., (X,, ,) as
learning samples. Note that the pair (x;, ;) is not used for mod-

el fitting. The value x, and the estimation function }1 are used

to find the value of ;’1- Then, the mean-square error (MSE) of

the test for this observation couple is calculated as follows
MSE, =(y,-y))*

This process is repeated for each pair (x;, y;), i=1,..., n.

The test error is calculated for each i
MSE, =(y;=y,)*. “)

The test error for the LOOCYV method is the average of the
errors

1 n
CV ==Y MSE,.
n; i (6))

Models evaluating criteria. The model to be used is chosen
according to the minimum value of MSE. The existing agree-
ment between experimental and theoretical variogram values
is assessed using both the efficiency indicator (Nash-Sutcliffe
efficiency NSE) [13] and the precision with the root-mean-
square error (RMSE) indicator, and RMSE-observations
standard deviation ratio (RSR)[14].

The Nash-Sutcliffe efficiency (NSE) criterion is calculat-
ed as follows [15]

Z(yi _;/,')2
NSE=1-L£—— (6)

> (-7
i=1

The NSE range is between — o0 and 1 (perfect fit) [13].

A simple way to obtain the model accuracy consists of cal-
culating RMSE (root-mean-square error) [15]. The RMSE
represents the differences between the values predicted by a
model and the values actually observed.

(7

The RSR is calculated by the ratio between the RMSE and
the standard deviation of the measured data [14]

[0y
RSR=E—— ®)
1}2()’,’ _y)2
i=1

The RSR varies from the optimal value of 0, which indi-
cates zero RMSE or a residual variation and therefore a perfect
model simulation, to a high positive value. The lower is the
RSR, the lower is the RMSE indicating a better match be-
tween the observed and simulated data.

Principal Features of the variogram model. The variogram is
a fundamental tool in geostatistics for describing the spatial
structure of regionalized variables. It serves as the foundation
for prediction and simulation algorithms and provides valu-
able insights into the properties of these variables. It is charac-
terized by parameters such as the range, nugget effect, sill, and
variograph (Fig. 3).
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Fig. 3. Variogram parameters [16]:

a — Range; Cy — Nugget effect; Cy + C — Sill variance; y(h) —
Semi-variance; h — Distance (m)

The variogram is constructed by plotting the semivariance
of the attribute against the distance between data points. This
resulting graph is then fitted with a mathematical function, like
spherical, exponential, or Gaussian models, to characterize
spatial correlation.

Estimation method. The variographic model chosen at the
outcome of the cross-validation is used to interpolate by krig-
ing [4], the studied variables, where they were not sampled,
and subsequently to evaluate the mine reserves by the geosta-
tistical method (ordinary kriging)[7].

The elaborated tool structure. The calculation code is devel-
oped as nested loops dealing with different phases of a geosta-
tistical calculation. The observations outcoming from the ex-
ploration campaigns are the input data of the developed model.

The calculations are structured as follows:

1. Calculation of experimental variograms from survey
data introduced, followed by the theoretical models adjust-
ment using the least squares method (iterative calculation).

2. Identification of the best model of the adjusted vario-
gram using the cross validation method (LOOCYV): The ex-
perimental variogram is established from the #» — 1 samples,
the remaining sample is used to compare the estimated vari-
ables to the sampled variables. This procedure is repeated n
times corresponding to the number of samples.

3. Discretization of the study area and establishment of the
mesh matrix according to the chosen space step.

4. Establishment of the kriging matrices corresponding to
different mesh points, thus making it possible to estimate the
variables and their estimation variances.

5. Display of estimation results in graphical and tabular
forms.

The geostatistical approach application. Application case.
After having implemented the geostatistical approach, it is
necessary to implement it on a real case, in order to test the
followed approach performance.

The Bled El-Hadba deposit (North-East of Algeria) was
chosen to study the spatial variability of P,Os contents and
thicknesses. We are interested in the study of the deposit main
layer, which corresponds to the middle layer.

The geochemical data (61 holes) outcoming from the de-
posit exploration campaigns are used. These samples are dis-
tributed in an irregular manner; the inter-sample distance is
quite large, reaching up to 500 m in some places.

Results. The geostatistical approach application to the
Bled-El-Hadba deposit allowed us to estimate phosphate re-
serves, based on available geochemical data.

The calculation results of the phosphate grades and thick-
nesses of the study area are presented below in the form of var-
iographic models and estimation maps.

Phosphate layer thicknesses estimation. Theoretical and ex-
perimental variograms derived from the LOO cross-validation
are presented in the following figure.

Experimental variograms showed the influence of some
samples in the variance calculation (the difference can reach

15). The theoretical variograms adjustment to the experimen-
tal data shows a good fit following to the exponential model
used (Fig. 4).

After calculating the variograms and applying the valida-
tion procedure, it is a question of choosing the most represen-
tative model (Fig. 5).

This variogram reaches a sill of C(0) = 35.6677 for a maxi-
mum range of @ = 1380 m. The chosen model shows a continu-
ity near the origin illustrated by a nugget effect (C, =0).

The adequacy between theoretical and experimental mod-
els is quantified by the evaluating criteria of the fit quality
(MSE, RMSE, NSE, RSR). The results are shown in Table 1.

The concordance between theoretical and experimental
models is evaluated by the RMSE, NSE and RSR criteria,
which display allowable values (Table 1).

The mean squared error (MSE) is vital in the choice of the
best validation model. As a result, the chosen model has a
minimum MSE of 0.036.

The theoretical model chosen is used in an Ordinary Krig-
ing procedure in order to evaluate the dispersion of the phos-
phate layer thicknesses in the study area (Fig. 6).

This map shows the thicknesses distribution in the deposit,
which vary between 8 and 25 meters

In order to evaluate the quality of the estimation results, it
is necessary to calculate the estimation variance (Fig. 7).

The sampled area has an acceptable estimation quality
(variance < 35.66), where the best quality is found in the cen-

Adjustment with the Gauss-Newton method
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Fig. 4. Phosphate layer thicknesses validation variograms:
a — Experimental data; b — Best fit
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Fig. 5. Phosphate layer thicknesses variographic model selected:
a — Experimental data; b — Best fit; c — Range

Table 1
Quality criteria of fitted models for thicknesses of the
phosphate layer
MSE RMSE | NSE | RSR
Theoretical MIN 0.036 6.226 | 0.318 | 0.514
models MAX | 182335 | 8.851 | 0.694 | 0.845
MEAN 23.037 8.205 | 0.570 | 0.646

Retained model | LOOCV | 0.036 6.599 | 0.572 | 0.642
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Fig. 7. Phosphate layer thicknesses estimating variance map

tral deposit zone (variance < 12), characterized by a higher
sampling density. A proportionality relationship is established
between the estimation variance and the samples number.

The phosphate content estimation. The geostatistical ap-
proach application in the spatial variability study on the grades
gave similar results to those of the thicknesses, corresponding
to cross-validation variograms (Fig. 8), variographic model re-
tained (Fig. 9), content dispersion map (Fig. 10), content vari-
ance map (Fig. 11).
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Fig. 8. Phosphate content Cross-validation Variograms:
a — Experimental data; b — Best fit
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Fig. 11. Estimating the phosphate content variance map

The range value corresponding to the retained phosphate
contents variogram has considerably decreased (742 m) com-
pared to that of the thicknesses variogram. The level of this
variogram reaches a sill of C; = 3.87.

The assessing criteria of the content fit quality leads to al-
lowable values (Table 2).

Reserves estimation. The phosphate reserves of the depos-
it middle layer (Table 3) are calculated from the thicknesses
and contents. These are estimated by applying a geostatistical
method associated with a cross-validation procedure allowing
improving accuracy by choosing the best variographic model.

Discussion. The application of a geostatistical approach al-
lows improving the quality of the reserve estimation, by study-
ing the variographic model choice. This approach is developed
as a calculation code under Matlab, associating the various
adjustment steps of validation and kriging.

The models used for kriging are chosen using a cross-vali-
dation procedure (LOOCYV), which improves the quality of
ordinary kriging results (Figs. 6, 7, 10 and 11). The leave-one-
out cross-validation application, allows the generation of a
large number of variograms (Figs. 4 and 8) according to the
number of samples used, thus allowing us to study the spatial
variability grade and thicknesses of the mineralized layer.

| (b) Bestiit

© (a) Experimental datal

X (c)Range

L
2000

2500

Table 2
Quality criteria of fitted models for phosphate content
MSE RMSE | NSE | RSR
Theoretical MIN 1.54-1077 | 34.791 | 0.084 | 0.883
models MAX | 214554 | 35.883 | 0.281 | 1.076
MEAN | 23.053 34.900 | 0.199 | 0.990
Retained model | LOOCV | 1.54- 1077 | 34.953 | 0.248 | 0.989
Table 3

The phosphate reserves estimation

Distance h (m)

Fig. 9. Phosphate content retained variographic model:
a — Experimental data; b — Best fit; c — Range

The mineralized rock
reserves (million m?®)

Phosphate reserves
(million m%)

Phosphate Content

81.185

20.255

%
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The use of different criteria such as NSE, RMSE, and
RSR in the adjustment phase of theoretical models to the ex-
perimental variograms allows for the evaluation of the fit
quality and estimation error. The NSE criterion provides in-
formation about the goodness of fit, while RMSE and RSR
quantify the estimation error. By combining these criteria, an
overall assessment of the quality of the model can be ob-
tained.

Adapting the NSE criterion for quality improvement not
only provides engineering information about the system, but
also offers a comprehensive solution for quality engineering
[17]. This means that the NSE criterion can be used to evalu-
ate the quality of the models used in this study and provide
information about the system being modeled. Furthermore,
the NSE criterion can be used as a tool for quality improve-
ment in the mining industry, providing a comprehensive solu-
tion for quality engineering.

According to the results presented in Tables 1 and 2, the
models used in this study provide reliable results for both the
thicknesses variograms and phosphate grades variograms,
with median NSE values of 0.570 and 0.199, respectively,
and RSR values of 0.646 and 0.990, respectively. The choice
of the best variogram is based on the quantification of the
minimum square error of the thicknesses and grade vario-
grams.

The efficiency and precision criteria also display allowable
values, indicating satisfactory adjustment quality of the ex-
perimental data to the theoretical models. Therefore, leave-
one-out cross validation can be used to estimate and compare
the performance of the models.

The above statement indicates that the criteria used to
evaluate the quality of the adjustment of experimental data to
theoretical models are satisfactory. The mean-square error
(MSE) of the thickness and grade variograms is 0.036 and
1.54 - 1077, respectively, indicating that the models are well-
fitted to the data (Figs. 2 and 6). Additionally, the NSE (Nash-
Sutcliffe efficiency) and RMSE (root mean square error) val-
ues of 0.572 and 6.599, respectively, indicate that the models
provide reasonable estimates of the observed data. Overall, the
results suggest that the theoretical models provide a good rep-
resentation of the observed data and can be used to make ac-
curate predictions.

The use of leave-one-out cross-validation (LOOCYV) in
this study is appropriate because the dataset used is relatively
small, with only 61 samples. LOOCYV is a powerful method
for model selection because it is model agnostic and provides
an unbiased estimate of model performance [18]. However, it
can be computationally expensive for large datasets due to the
need to refit the model for each sample repeatedly [19]. Ac-
cording to the literature cited, LOOCYV is favored for a limit-
ed number of data, and in this case, it offers a better solution
with minimal time cost. Overall, the use of LOOCYV in this
study is justified and can provide reliable estimates of model
performance.

The results obtained from the ordinary kriging phase are
considered representative and are supported by the geostatisti-
cal approach and LOOCYV procedure (as seen in Figs. 3, 4, 7
and 8). The use of these methods provides confidence in the
accuracy and reliability of the obtained results.

This validation can be seen from two perspectives. The
first is used in the computer science community, it consists
in improving the quality of the adjusted model. The second
perspective is from a practical standpoint, where the vali-
dated model can be used to make better decisions in re-
source management and exploitation. By having a more ac-
curate estimate of the mineral reserves, mining companies
can optimize their extraction plans, reduce waste and mini-
mize costs. This can lead to significant improvements in
profitability and sustainability of the mining operations. Ad-
ditionally, the use of geostatistics and cross-validation
methods can increase the reliability and credibility of the

resource estimates, which is important for investors, regula-
tory bodies and other stakeholders involved in the mining
industry. Overall, the validation of the variograms models
using the LOOCV method provides both technical and
practical benefits, making it an important tool for the min-
ing industry.

Limitations and directions of research development. It is
important to note that the choice of cross-validation meth-
od depends on the number and distribution of samples.
When dealing with limited sampling, the LOOCV method
is recommended, as it involves eliminating a sample in turn
for verification [18]. This method ensures that the spatial
continuity of the parameters being studied is not affected by
using (n — 1) samples for experimental variogram calcula-
tions.

In the future, it is important to explore methods that offer
more robust evaluations while considering simplicity of appli-
cation and minimal computational cost. By seeking such
methods, you can strike a balance between accuracy and com-
putational efficiency. However, it is crucial to select the valida-
tion method based on the specific characteristics of the prob-
lem and the available data. Different methods may be more
suitable for different scenarios, and careful consideration
should be given to ensure the chosen method aligns with the
requirements and limitations of the study.

Conclusion. The geostatistical approach developed in this
study has demonstrated its effectiveness in improving the esti-
mation of mineral reserves. The use of the least squares and
LOOCYV methods in the variogram model selection and esti-
mation phases, respectively, has resulted in a more accurate
representation of the spatial variability of the studied parame-
ters. The evaluation of efficiency factors, such as Nash-Sut-
cliffe, RMSE, and RSR, has confirmed the quality of the ad-
justment models obtained.

However, the sensitivity of the least squares method to ini-
tial data highlights the need for caution in its use, and the ap-
plicability of the LOOCYV method may be limited to sites with
a smaller number of data points. The development of a com-
puter code for this geostatistical approach provides a practical
tool for decision-makers to use in the management and ex-
ploitation of mining sites. Overall, this study has contributed
to the advancement of geostatistical techniques and their ap-
plication in the mining industry.

We suggest a generalization of the accuracy assessment
method using Leave-One-Out Cross-Validation, a model vali-
dation technique widely used in estimation fields like geosta-
tistics. This method is particularly suitable for small datasets,
as commonly encountered in the mining industry.

References.
1. Ajak, A. D., Lilford, E., & Topal, E. (2018). Application of predic-
tive data mining to create mine plan flexibility in the face of geological
uncertainty. Resources Policy, 55, 62-79. https://doi.org/10.1016/j.re-
sourpol.2017.10.016.
2.Li, Z., Zhang, X., Zhu, R., Zhang, Z., & Weng, Z. (2020). Integrating
data-to-data correlation into inverse distance weighting. Computational
Geosciences, 24, 203-216. https://doi.org/10.1007/s10596-019-09913-9.
3. Choi, Y., Baek, J., & Park, S. (2020). Review of GIS-based applica-
tions for mining: Planning, operation, and environmental management.
Applied Sciences, 10(7), 2266. https://doi.org/10.3390/app10072266.
4. Jalloh, A. B., Kyuro, S., Jalloh, Y., & Barrie, A. K. (2016). Integrat-
ing artificial neural networks and geostatistics for optimum 3D geo-
logical block modeling in mineral reserve estimation: A case study.
International Journal of Mining Science and Technology, 26(4), 581-
585. https://doi.org/10.1016/j.ijmst.2016.05.008.
5. Rebbah, R., Duarte, J., Djezairi, O., Fredj, M., & Baptista, J.S.
(2021). A Tunnel under an In-Pit Mine Waste Dump to Improve En-
vironmental and Landscape Recovery of the Site. Minerals, 11(6).
https://doi.org/10.3390/min11060566.
6. Zerzour, O., Gadri, L., Hadji, R., Mebrouk, F., & Hamed, Y.
(2021). Geostatistics-Based Method for Irregular Mineral Resource
Estimation, in Ouenza Iron Mine, Northeastern Algeria. Geotechnical

146 ISSN 2071-2227, E-ISSN 2223-2362, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2023, N2 5



and  Geological  Engineering, 3337-3346. https://doi.
org/10.1007/s10706-021-01695-1.

7. Afeni, T. B., Akeju, V. O., & Aladejare, A. E. (2021). A comparative
study of geometric and geostatistical methods for qualitative reserve
estimation of limestone deposit. Geoscience Frontiers, 12(1), 243-253.
https://doi.org/10.1016/j.gsf.2020.02.019.

8. Berrar, D. (2019). Cross-Validation. Encyclopedia of Bioinformatics
and Computational Biology, (1), 542-545. https://doi.org/10.1016
B978-0-12-809633-8.20349-X.

9. Vehtari, A., Simpson, D. P., Yao, Y., & Gelman, A. (2018). Limita-
tions of “Limitations of Bayesian Leave-one-out Cross-Validation for
Model Selection”. Computational Brain & Behavior, 2(1), 22-27.
https://doi.org/10.1007 /s42113-018-0020-6.

10. Giordano, R., Stephenson, W., Liu, R., Jordan, M., & Broder-
ick, T. (2019). A Swiss Army Infinitesimal Jackknife. In C. Kama-
lika, & S. Masashi (Eds.). Proceedings of the Twenty-Second Inter-
national Conference on Artificial Intelligence and Statistics, PMLR:
Proceedings of Machine Learning Research, (pp. 1139-1147). Re-
trieved from htt roceedings.mlr.press/v89/giordano19a/gior-
danol19a.pdf.

11. Kechiched, R., Laouar, R., Bruguier, O., Salmi-Laouar, S., Koc-
sis, L., Bosch, D., ..., & Larit, H. (2018). Glauconite-bearing sedi-
mentary phosphorites from the Tébessa region (eastern Algeria): Evi-
dence of REE enrichment and geochemical constraints on their ori-
gin. Journal of African Earth Sciences, 145, 190-200. https://doi.
org/10.1016/j.jafrearsci.2018.05.018.

12. Zhongda, T., Shujiang, L., Yanhong, W., & Xiangdong, W. (2018).
Mixed-kernel least square support vector machine predictive control
based on improved free search algorithm for nonlinear systems. Trans-
actions of the Institute of Measurement and Control, 40(16), 4382-4396.
https://doi.org/10.1177/0142331217748193.

13. Duc, L., & Sawada, Y. (2022). A signal processing-based interpreta-
tion of the Nash-Sutcliffe efficiency. EGUsphere. https://doi.
org/10.5194/egusphere-2022-955.

14. Chen, C., Zhang, Q., Kashani, M. H., Jun, C., Bateni, S.M.,
Band, S.S., Dash, S.S., & Chau, K.-W. (2022). Forecast of rainfall
distribution based on fixed sliding window long short-term memory.
Engineering Applications of Computational Fluid Mechanics, 16(1),
248-261. https://doi.org/10.1080/19942060.2021.2009374.

15. Zhong, X., & Dutta, U. (2015). Engaging Nash-Sutcliffe efficiency
and model efficiency factor indicators in selecting and validating ef-
fective light rail system operation and maintenance cost models. Jour-
nal of Traffic and Transportation Engineering, 3, 255-265. https://doi.
org/10.17265/2328-2142/2015.05.001.

16. Yasojima, C., Protézio, J., Meiguins, B., Neto, N., & Morais, J.
(2019). A new methodology for automatic cluster-based kriging using
K-nearest neighbor and genetic algorithms. Information, 10(11), 357.
https://doi.org/10.3390/info10110357.

17. Zeybek, M. (2018). Nash-sutcliffe efficiency approach for quality
improvement. Journal of Applied Mathematics and Computation, 2(11),
496-503. https://doi.org/10.26855/jamc.2018.11.001.

18. Magnusson, M., Vehtari, A., Jonasson, J., & Andersen, M. (2020).
Leave-One-Out Cross-Validation for Bayesian Model Comparison in
Large Data. In C. Silvia, & C. Roberto (Eds.). Proceedings of the
Twenty Third International Conference on Artificial Intelligence and Sta-
tistics. PMLR: Proceedings of Machine Learning Research, (pp. 341-
351). Retrieved from http://proceedings.mlr.press/v108/magnusso-
n20a/magnusson20a.pdf.

19. Gronau, Q.F., & Wagenmakers, E.-J. (2019). Limitations of
Bayesian leave-one-out cross-validation for model selection. Compu-
tational brain & behavior, (2), 1-11. https://doi.org/10.1007/s42113-
018-0011-7.

39(5),

Oninka MiHepaJbHHX pecypciB 3a I0IIOMOTOI0
reoCTaTUCTHYHOTO aHatdi3y Ha ochaTHOMy
POAOBMIIL

M. Mazapi*'?, C. Yaby-Mocmegpaii', A. Baai®,
K. Kyiidep*>, A. Benceney6®, C. Beanyyui’

1 — Kadenpa ripunyoi iHxeHepii, HaltioHaibHa mosiTexHiu-
Ha 111KoJ1a AJKUpY, M. AJDKUD, AJKUDP

2 — Kadenpa rippuyoi cripaBu Ta reojiorii, TexHonoriuHui
dakynbrer, YHiBepcurer AbneppaxmeHa Mipa, M. bemxkasi,
AJKup

3 — Kadenpa nuBinbHOro 6yniBHULTBA, JlJabopaTopis Oymi-
BEJIbHUX MaTepialliB Ta eKoJiorii, HalioHaibHa nosiiTexHiuHa
LIKOJIa AJDKUPY, M. AJDKUD, AJKUD

4 — HaykoBo-gociigHa yjjadopartopist BonHUX Hayk, Hartio-
HaJIbHA TMOJIITEXHIYHA 1IKoIa AJDKUPY, M. ATDKUP, AJKUAD

5 — MakyabTeT UUBIIBHOTO OYIiBHUIITBA, YHiBEPCUTET HAyK
i TexHoJI0Tii iMeHi Xyapi bymeabeHa, M. Aykup, AJKup

6 — Binmin HaBKOJIMIITHBOTO CepeOBUIIA, MOICTIOBAHHS Ta
3MiHM KJiMaty, HayKoBo-mgocCminHuii LEHTP 3 OXOPOHU J10-
BKiJUISI, M. AHHa0a, AJKup

7 — Hauionanpni na6oparopii ®packari, ®packati, M. Pum,
ITanis

* ABTOP-KOpPECTTOHIEHT e-mail: messaoud.mazari@g.enp.edu.dz

Mera. Bubip BinmosimHOi Bapiorpadiunoi Momeni Mae
BUpilllaJibHEe 3HAYEHHSI B T€OCTAaTUCTULL 111 OTPUMAaHHS TOY-
HUX OLiHOK 3aItaciB KOPUCHUX KoTaJuH. MeTolo 11iei poboTu
€ po3po0Ka IHCTPYMEHTY OLIIHKM 3ar1aciB i3 BUKOPUCTAHHSIM
TreOCTaTUCTUIHOTO IMiIXOy.

Metoauka. ['eocTaTMCTUYHUI ITiaXin 0a3yeThest Ha BUOOPi
HaNOIBII pernpe3eHTaTUBHUX BapiorpaiyHUX Monaeeit st
3MiHHUX, 1110 TOCiIXY0ThCS. Binbip Mmoneneii 3ailicHIoeTbest
LIUTSIXOM 3aCTOCYBaHHS TIPOLIEIYPH ITEPEXPECHOTO 3aTBEPIKY-
BaHHS 3 BUKJIIOUeHHsIM 110 ogHoMy (LOOCYV). LOOCV — 1e
METOJI TIOBTOPHOI BUOIPKH, 110 BUKOPHUCTOBYETHCS Y CTATUC-
TUYHOMY aHaji3i 1 MallMHHOMY HaBYaHHIi IJIs OLIHKU MO-
MWJIKU y3araJbHeHHS MO Ta TOPiBHSIHHS e(heKTUBHOCTI
pizHux Mozeneit. ITicast uboro 3MiHHI, 11O JOCTIIXKYIOTHCS,
OLIiHIOIOTHCSI 32 TOTTOMOTO0 3BUYAHOTO KPUTIHTY.

PesyabTaTi. 3acToCyBaHHSI 3alpOINOHOBAHOIO IiAXOMY
JIO3BOJIVIO OTPUMATH 3aI0BiUTBHI pe3yJabTaTH 3 TOUKU 30pY
JIUCTIEPCii COPTIB i TOBIIMHU MiHepali30BaHUX 11apiB Ha ¢oc-
¢aTHOMY ponoBuiii. 151 OLIIHKHY SIKOCTi OTpUMaHUX MOJeIei
KOpUTYBaHHSI OyJI BUKOpUCTaHi KoedillieHTH e(heKTUBHOCTI,
Taki K KoedimieHT Hema-Catkiicdhda Ta KopeHeBa cepel-
HbokBanpatuyHa moxubka (RMSE). Lli cdakropu HamaioTb
KITbKICHY OLIIHKY Y3TOJIPKEHOCTI MixX 3HAYEHHSIMU, 1110 CITO-
CTEpiraloThcsl Ta TPOTHO3YIOThCS. 3HAYeHHST e(DeKTUBHOCTI
Hemra-Carkitidpda Ta cepemHbOKBagpaTUIHOL IToxXuoku 0,572
Ta 6,599 BIiAMOBITHO, CBiMYaTh MPO Kpallly BilITOBiTHICTD i
OUIBIITY TOYHICTH Moeselt kopuryBaHHs. Kpurepii TouHOCTI
Ta e(heKTUBHOCTI JOCTIKYBaHUX 3MiHHUX MalOTh MPUMHSATHI
3HAYeHHH i3 cepeIHbOKBAIPATUYHOIO MOXUOKOIO 1,54 - 1077,

HaykoBa nHoBusHa. [Toe1HaHHS METO/iB HAMEHIIIMX KBa-
npatiB i LOOCV y reoctaTUCTUYHOMY aHali3i MPU3BOAUTH
N0 TMiABUIIEHHSI TOYHOCTi OIIHOK, OibIIOi HamiliHOCTI y
MpeacTaBiIeHHi IPOCTOPOBOI MiHJIMBOCTI MapaMeTpiB i Oib-
11101 BIIEBHEHOCTI B IOCTOBIPHOCTI MOJieJieii KOpUTYBaHHSI.

IIpakTyna 3naunmMicTb. Po3po6Ka KOMIT I0TEpPHOTO KOy
IIJIS1 LIOTO T€OCTaTUCTUYHOTO MMiaX0My 3a0e3reuye MmpakThui-
HUM IHCTPYMEHT [J1s1 OCi0, SIKi MPpUIMAaIOTh PillIeHHS, IJ1s1 BU-
KOPHMCTAaHHSI B YNpaBJIiHHI Ta eKCIUIyaTallii ripHu40100yB-
HHUX 00’€KTiB. 3arajioM, 1i¢ TOCTIIKCHHS CITPUSIIO PO3BUTKY
TeOCTaTUCTUYHMX METO[IB i iX 3aCTOCYBAaHHIO B FipHUYOI0-
OYBHIif MPOMUCIOBOCTI.

KurouoBi cioBa: podosuwe breo-Env-Xadba, nepexpecne
sameepoxucysanus (LOOCV), eeocmamucmuka, kpueine, 3ana-
cU KOPUCHUX KONAAUH
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