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QUALITY ASSESSMENT OF 3D POINT CLOUD OF INDUSTRIAL BUILDINGS
FROM IMAGERY ACQUIRED BY OBLIQUE AND NADIR UAV FLIGHTS

Purpose. The main objective of this paper is to assess the quality of the 3D model of industrial buildings generated from Un-
manned Aerial Vehicle (UAV) imagery datasets, including nadir (N), oblique (O), and Nadir and Oblique (N+0O) UAYV datasets.

Methodology. The quality of a 3D model is defined by the accuracy and density of point clouds created from UAV images. For
this purpose, the UAV was deployed to acquire images with both O and N flight modes over an industrial mining area containing
a mine shaft tower, factory housing and office buildings. The quality assessment was conducted for the 3D point cloud model of
three main objects such as roofs, facades, and ground surfaces using CheckPoints (CPs) and terrestrial laser scanning (TLS) point
clouds as the reference datasets. The Root Mean Square Errors (RMSE) were calculated using CP coordinates, and cloud to cloud
distances were computed using TLS point clouds, which were used for the accuracy assessment.

Findings. The results showed that the point cloud model generated by the N flight mode was the most accurate but least dense,
whereas that of the O mode was the least accurate but most detailed level in comparison with the others. Also, the combination of
O and N datasets takes advantages of individual mode as the point cloud’s accuracy is higher than that of case O, and its density is
much higher than that of case N. Therefore, it is optimal to build exceptional accurate and dense point clouds of buildings.

Originality. The paper provides a comparative analysis in quality of point cloud of roofs and facades generated from UAV pho-
togrammetry for mining industrial buildings.

Practical value. Findings of the study can be used as references for both UAV survey practices and applications of UAV point
cloud. The paper provides useful information for making UAV flight planning, or which UAV points should be integrated into TLS

points to have the best point cloud.

Keywords: UAV, Oblique, Nadir, 3D modelling, terrestrial laser scanning, quality assessment

Introduction. A three-dimension (3D) map is defined as a
computer representation of a 3-D integrated geo-data model
with cartographic content [1]. 3D maps play nowadays an in-
creasingly important role in planning, designing, operating,
and managing urban areas, including cities, towns and indus-
trial zones [2—4]. In order to build a 3D map, a Digital Terrain
Modeling (DTM) of the area is necessarily generated. Also, all
objects located in the mapping area are needed to be modeled
in the 3D space.

To date, 3D mapping or modeling has received consider-
able attention from both scientists and managers. There have
been many technologies involving 3D mapping ranging from
traditional ground surveying such as total station and GNSS to
a new generation of remote sensing technologies, including
Laser Imaging Detection and Ranging (LIDAR) and UAV [5,
6]. While traditional methods can produce a high accuracy but
a poor density level of datasets, LIDAR and UAV can offer
reasonable/exceptional accuracy and high-density datasets
[7]. In addition, both LIDAR and UAYV can create clouds of
millions of 3D points with exceptional accuracy at quick times,
so they are more effective than the total station and GNSS [7].
However, while LIDAR technology is still high cost, especially
for the highly temporal data collection, the availability of low-
cost UAV systems allows it to become a common approach to
3D mapping of urban areas.

When the UAV photogrammetry is chosen as a method of
data collection for 3D mapping, there are two common UAV
flight modes regarding the angle of the camera axis, including
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nadir and oblique. While using the former, the UAV camera
captures images with its axis along the vertical direction; for
the latter, the images are shot with the camera axis at an angle
with respect to the vertical (a camera inclination angle). In
general, a UAV survey is often conducted with the nadir mode,
but for 3D mapping of objects with a large vertical dimension
such as towers, buildings, the oblique mode is more popular
[8—11]. However, in 3D mapping of a large area, a combina-
tion of the two modes is usually performed using the nadir
mode with linear flight patterns covering the whole area and
the oblique one with orbital flight patterns focusing on high
and/or complex objects [12—14].

So far, there have been numerous works focusing on the
influence of camera inclination angle on the accuracy of 3D
modelling. Several studies focused on oblique camera angles
ranging from 05 to 35° and 3D mapping natural objects such as
a deglaciated terrain with layers of siltstone and fine-to-medi-
um-grained sandstone [12], from 10 to 20° and 3D mapping
rocks [15], from 20 to 30° and 3D mapping forests [16], from
25 to 30° and mapping a coastal cliff surface [15], from 45 to
65° and mapping a coastal erosion scarp [17]. Other works fo-
cused on the 3D high-level-of-detail reconstruction of his-
torical architectures, such as using an oblique angle of 45° [18],
and 90° [19] for 3D modeling of heritage buildings. Another
work used a tilt angle of the camera of 45° to 3D mapping a
large area of the French city, Bordeaux [20]. Overall, the cam-
era axis angle in a 45—90° range is often chosen for 3D map-
ping buildings.

In 3D modeling buildings, there are three main objects
that should be considered, including facades, roofs, and the
ground surface surrounding buildings as they influence the
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quality of building documentation. The analysis may centre on
the quality of the 3D model containing the accuracy and the
density of the point cloud model. In industrial regions, factory
buildings are one of the main features of these areas. They are
often built in large sizes, with industrial materials, flat roofs,
jutting edges, and polished surfaces, and partly contribute to
the architecture of the region. However, so far, not many UAV
based mapping studies have provided any comparative analysis
of the 3D model of factory buildings regarding the three above
objects generated from the UAV-Structure from Motion
(UAV-SfM). The homogeneity of surfaces of factory housing
might be one of the error sources in the UAV based 3D map-
ping. In this study, the quality of 3D point cloud models of
facades, roofs, and surrounding ground surfaces was exam-
ined. The study aims to compare the accuracy and density of
point cloud models generated from three cases of UAV image
blocks, including the nadir imagery (Case N), the oblique im-
agery (Case O), and the combined nadir and oblique imagery
(Case N + O).

Study area and data collection. Study site. In this study, the
ground area of the Nui Beo underground coal mine was se-
lected as the study area. This area is located in Quang Ninh
province, Vietnam. Its area is about 12 hectares and features
5—6 story buildings and two mineshaft towers (Fig. 1). The
construction of the two mine shafts began in 2012 and was
completed in 2016. The designed capacity of coal production
is approximately two million tons of coal per year. According
to the design, the primary shaft is dug from the elevation of 35
to —410 m, equipped with cages to transport coal. The second-
ary shaft is dug from the elevation of 35 to —370 m, equipped
with cages for transporting people, equipment, and construc-
tion materials. On the ground, only the wall of office buildings
is built with bricks, while all roofs and the walls of factory

Fig. 1. Study area:

buildings are built with metal materials. This industrial mining
architecture is quite popular.

Survey equipment. For data collection in this study, three
survey instruments, including a DJI Inspire 2 drone, a FARO
FOCUS?P X130 laser scanner, and a Leica FlexLine TS09 to-
tal station were employed. These instruments were technically
checked and validated to be at the ready-to-use status.

The camera mounted on the drone is crucially important
as it contributes to the accuracy of resulting 3D models directly.
In this study, the UAV camera is a Zenmuse X4S witha CMOS
1” sensor, 24 MegaPixel, a focal length of 8.8 mm/F2.8-11, and
a FOV of 84° (Fig. 2).

In order to evaluate the accuracy of 3D models generated
from UAYV, two assessment methods are using several check-
points and dense point clouds. The acquisition of these refer-
ence datasets was performed using a Leica FlexLine TS09 total
station and a FARO FOCUS?P X130 laser scanner (Table 1).

Data collection. The data collection began with the mea-
surement of ground control points (GCPs), checked points
(CPs) and TLS targets in the VN-2000 coordinate system. The
distribution of GCPs and CPs is shown in Fig. 3. There were
23 ground points measured by a Leica FlexLine TS09 (Ta-
ble 1) with seven, four, and nine of them being used as CPs for
the accuracy assessment of the nadir, oblique, and nadir and
oblique cases, respectively (Figs. 3, a, b, ¢). The positional ac-
curacy of these points was at the subcentimeter precision.

Several GCPs and CPs were chessboard markers placed on
both ground surface and facades (Fig. 4). Their positions were
measured using the Leica FlexLine TS09 total station in the
non-prism mode for facade markers and the prism mode for
ground markers. In addition to the purpose of georeferencing
the TLS and UAV data, some of them were used for the align-
ment of UAV and TLS point clouds.

a — Industrial yard of an underground coal mine (within the yellow boundary line); b — TLS scan locations (red dots)

Fig. 2. UAV equipment:
a — DJI Inspire 2 drone; b — Zenmuse XS4 camera
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Table 1
Laser scanner and total station specifications
FARO FOCUS?P X130
Range of 90 %
Measurement | reflectivity 0.6-130 m
Distance Accuracy +2 mm
Scanning Rate (points/ Up to
second) 976 000
Field of View 360 x 300°
Camera Resolution 70 MPixel
Tilt Unit Type Dual axis
compensator
Range +5°
Leica FlexLine TS09
Angle measurement 1”7
accuracy
Distance Prism 1.5 mm +
measurement 2 ppm
accuracy T mm s
Reflectorless
2 ppm

Fig. 3. Distribution of GCPs and CPs for:
a — the nadir; b — oblique; ¢ — nadir and oblique cases

a

/
E The linear flight orbit

a

Fig. 5. Planning and performing:

UAV flights for data collection were planned and operated
using DJI GS Pro, a DJI UAV software installed on an Ipad.
There were three flight plans, including one linear flight and
two circular flights. While the linear flight plan was to acquire
nadir images over the whole study area (Fig. 5, a), the circular
one was to capture oblique images of the centre area with of-
fice buildings and the secondary mine shaft tower (Fig. 5, b).

Several important flight plan parameters were set up for
each plan, such as flight height, image overlaps, camera optical
axis angle. However, for circular flights, these parameters were
extensive to flight radius and building radius, which are the
distances from the centre of flight circular orbits to the drone
and the boundary of focusing building. In addition, while the
ground sample distance (GSD) of images is defined by the
flight altitude in the linear flight mode, it is dependent on both
the flight radius and altitude in the circular one. The drone was
automatically operated in a stop-and-go mode, meaning the
drone hovers before its camera shoots each image. This could,
therefore, reduce negative impacts on the subsequent photo-
grammetric results. Table 2 compiles these important param-
eters and summarises the result of UAV data collection.

TLS survey was designed with eight external scans at the
ground level (Fig. 1). Therefore, some parts of the second

@ Ground control points (CGPs)
Checkpoints (CPs)

O The object boundary circle
(O The circular flight orbit

b

a — the linear flight for the nadir image acquisition; b — the circular flight for the oblique image acquisition
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Table 2
Flight plan parameters and UAV data
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mine shaft tower, such as roofs, could not be captured. How-
ever, many roofs of the surrounding buildings were sufficiently
captured for the reference data used for the comparison of
roofs (Fig. 6). The TLS point clouds of the ground surface,
facades, roofs were used as the reference data to assess the
quality of the entire 3D point clouds of these three objects,
processed from the UAV imagery data.

Methodology. Fig 7 summarizes the study’s workflow
which can be divided into three parts, including data acquisi-
tion, UAV and TLS data processing, and the quality assess-
ment of point clouds. While the first part is described in sec-
tions 2.2 and 2.3, the others are presented in the following
sections.

Structure from Motion (SfM) — photogrammetric process-
ing. The SfM photogrammetry processing contains the fol-
lowing steps [21]: 1) Identification of keypoint features in im-
ages through the use of algorithms such as the Scale-Invariant

Fig. 6. TLS point clouds of the ground surfaces, roofs, and fa-
cades used for the accuracy assessment of UAV point clouds
of these objects

Total station Nadir (N) and oblique (O)
acquisition UAYV data acquisition
GCPs| l

UAV SfM Processing

TLS data
acquisition

i \
' ' TLS
CPs| At . Generating densc cloud ' point
1| Generating dense cloud using using UAY imagery ! clouds
| P - g
: UAYV imagery with GCPs without GCPs :
1
: /

CPs based accuracy
assessment

————————————————————————————— <
’ Classifying and calculating cloud to cloud (C2C)
distances between UAV and TLS point clouds

Ground
[ Roofs ] [ Facadcs J [ surface ]
\ J

Comparison between N, O,
and N + O in RMSE, and CCD

Fig. 7. Schematic work flow of quality assessment of UAV point
clouds

Feature Transform (SIFT) [22]; 2) Images features matching;
3) Internal and external camera orientation; 4) Point cloud
generation through dense image matching algorithms [23, 24].

In this study, the UAV SfM processing software was Agi-
soft Metashape (Agisoft LLC., St. Petersburg, Russia). Table 3
summarizes the computation parameters of the software.
There were three scenarios of UAV dense cloud building, in-
cluding the nadir (N) UAYV, the oblique (O) UAYV, and the na-
dir and oblique (N + O) UAV. Therefore, there would be three
times processing these image blocks collectively.

In order to avoid any possible errors caused by GCP-based
georeferencing to the accuracy of UAV and TLS point clouds,
there was the case of no GCP in generating UAV and TLS
point clouds. Therefore, the alignment of UAV and TLS point
cloud is necessarily performed before classifying and extract-
ing the UAV and TLS point clouds of ground surfaces, fa-
cades, and roofs. This work contains two steps, including
coarse and fine alignments.

All TLS scans were processed and registered using the
FARO Scene software before exporting their point clouds in
the E57 format. The UAV and TLS point clouds in the E57
format were imported into the RECAP Pro software of AU-
TODESK to identify targets on facades and ground surfaces
which in turn were used for the coarse alignment step. For the
fine alignment, the algorithm of iterative closest point (ICP)
[25] was used. The alignment was performed in the open-
source software, CloudCompare.

Quality assessment of UAV point clouds. In this study, the
quality refers to the accuracy and density of the UAV point
clouds. Therefore, the quality assessment of the UAV point
clouds includes the accuracy assessment and the calculation of
point density. For the former, there were two accuracy assess-
ment methods, including one based on CPs and another one
based on cloud to cloud distances between UAV and TLS
point clouds of ground surfaces, facades, and roofs.

Accuracy assessment based on CPs. In order to evaluate the
accuracy of UAV point clouds generated by different flight
configurations, including N, O, and combination of N and O,
the Root Mean Square Error (RMSE) for X, Y, Z, X.Y., and
XYZ were calculated, using the following equations

RMSE, = J[(l/n)znl(xm —XCP,»)Z}

i=l

RMSE, = \/|:(1/H)Z(YDSM - YCPi)2i|;
i=1

RMSE,, = [ RMSE}, + RMSE} ;

Table 3
Computation parameters of the software

Agisoft Metashape Workflow Align Photos
Accuracy High
Generic preselection Enabled
Key point limit 40,000
Tie point limit 4000

Reference Settings
Marker accuracy (m) 0.005
Maker accuracy (pix) 1
Tie point accuracy (pix) 2
Dense Cloud Building

Quality High
Depth filtering Mild

134 ISSN 2071-2227, E-ISSN 2223-2362, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2021, N° 5



RMSE, :\/{(1/”)2(20“4 ~Zep) |;
i1

RMSE,,, = \/[ RMSE}, + RMSE} + RMSE} |,

where 7 is the number of CPs; X-p; and X)q,, are the X-coordi-
nate component of CPs and corresponding coordinate in Dig-
ital Surface Model (DSM), respectively; Yqp and Yy, are the
Y-coordinate component of CPs and corresponding coordi-
nate in DSM, respectively; Zqp; and Z)q,, are the Z-coordinate
component of CPs and corresponding coordinate in DSM,
respectively.

Calculation of cloud — cloud (C2C) distances. Because of the
much higher accuracy and density, the TLS point cloud was
used as the reference data in this study. After aligning the UAV
point clouds to the TLS one, the classification of both TLS and
aligned UAV point clouds into ground surfaces, facades, and
roofs were performed. At the next step, the cloud-to-cloud dis-
tances between classified UAV and TLS clouds were calculat-
ed. There are several computation methods such as nearest
neighbour distance and local model-based distance. The for-
mer is simple as the system searches the closest reference point
of each point in the compared cloud before calculating the Eu-
clidean distance between this pair of points. If the reference
point cloud is with a high density, this method can be used.
However, if the reference point cloud is not dense enough, the
nearest neighbour distance method might result in low accu-
racy. In this case, a model of reference surface is built by math-
ematically fitting it on the nearest point and several of its neigh-
bours before computing the distance from the comparing point
to this model. In this study, a high quadratic function was cho-
sen as it is more precise than others, such as the least square
fitting plane and 2D1/2 Delaunay triangulation.

Point density decrease rate. In order to properly evaluate
the effectiveness of each method, in addition to the CPs and
cloud-cloud distance-based accuracy assessment methods, a
point density decrease rate was used. With the assumption that
all cloud points with the cloud-cloud distance of smaller than
0.1 m would be excluded, the point density decrease rate was
calculated using the following formula

Am=m; —m,,

where Am is the point density decrease rate; m, and m, are the
cloud densities of pre-excluded and post-excluded point
clouds. The point density decrease rate indicates that the big-
ger it is, the less precise the point cloud is.

Results and discussions. The UAV survey was completed
with a total number of 327 images on a scale of 5472 x 3648,
including 125 nadir ones and 202 oblique ones. The TLS sur-
vey resulted in the data of eight scans. The two datasets were
processed using the workflow in Fig. 9. UAV generated
6 600 186 points, 24 170 293 points, and 32 526 599 points for
the Nadir (N), Oblique (O), and Nadir and Oblique (N + O)
combination, respectively. TLS generated 172 684 627 points
with the registration error of 8§ mm. Table 4 summarizes the
accuracy assessment of UAV point clouds, with three cases of
N, O, and N + O.

Table 4 reports that the number of CPs used for the accu-
racy assessment is different between the three study cases.
Case N used seven CPs and resulted in RMSEs of X, Y, X.Y.,
and Z, and XYZequalling 2.4, 3.0, 3.9, 3.8 and 5.5 cm, respec-
tively. Case O used just four CPs, and RMSEs of X, Y, X.Y.,
and Z, and XYZ equalling 1.7, 6.1, 6.4, 3.0 and 7.0 cm, respec-
tively. Case N+O used the biggest number of nine CPs, and
RMSEs of X, ¥, X.Y., and Z, and XYZ equalling 2.7, 4.1, 4.9,
4.6 and 6.7 cm, respectively. By comparison in RMSEs of X. Y.
(the positional accuracy), the results demonstrated that Case
N was the most accurate one, followed by Case N + O, and
Case O. However, by comparison in RMSEs of Z (the vertical

Table 4
Results of CP based accuracy assessment

Cases CPs Error, em
X Y XY z Xyz
Tl 33 | -19 | 38 | -19 | 42
9 32 | =22 | 39 | -04 | 39
23 =23 | -09 | 25 | 38 | 46
Nadis 15 -04 | 6.1 6.1 2.0 6.4
14 26 | -39 | 47 9.2 10.3
T5 22 | -12 | 25 | -06 | 26
T8 Ll | -04 1.1 0.1 11
RMSE | 24 3.0 38 39 5.5
A013 0.1 | 85 8.5 0.3 8.5
Tl4.1 2.6 7.4 79 | 22 | 82
Oblique | TS -19 | -47 | 50 | -49 | 70
T8 -11 | -13 17 | =27 | 32
RMSE | 17 6.1 6.4 3.0 7.0
Tl 41 | =36 | 55 | =35 | 65
9 32 | -19 | 38 | -08 | 39
23 221 | -05 | 22 | 44 | 49
14 32 | =36 | 48 1.7 | 127
Nadir+ | 15 00 | =56 | 56 3.1 6.4
Oblique  ['A013 34 | 76 8.3 1.2 8.4
Ti41 | 05 | 35 36 | -03 | 3.6
T5 30 | 34 | 45 | 225 | 52
T8 17 | 28 | 33 | -10 | 35
RMSE | 2.7 4.1 4.9 4.6 6.7

accuracy), Case O was the most accurate one, followed by
Case N, and Case N + O.

However, the difference between the number of CPs
among the three cases might not be compatible with the above
comparisons. Therefore, if using two common CPs, namely
T5and T8, it can be seen that Case N was the most accurate in
both vertical (Z) and horizontal dimensions (X.Y.). When
making a comparison between Case O and Case N+O, two
more CPs placed on the elevated parts of the mine shaft tower
were used. The results showed that Case N + O were more ac-
curate than Case O, with RMSEs of 5.3 and 6.3 c¢cm in the
horizontal dimension (X.Y.), and RMSEs of 1.4 and 3.0 cm in
the vertical dimension (Z), respectively.

In the next step, comparisons between the UAV photo-
grammetric point clouds and the TLS reference one were per-
formed by Cloudcompare software. For this purpose, the UAV
clouds were registered to the TLS one using the ICP algo-
rithm. This process resulted in the registered UAV clouds with
an accuracy of approximately 0.04 m. The classification was
conducted of UAV and TLS point clouds into three objects,
including ground surfaces, facades, and roofs. Each sub-cloud
of these objects extracted from Cases N, O, and N + O was
used as the compared cloud of comparisons.

Fig. 8 represents the histograms of C2C distances with the
Gauss distribution and the C2C distance maps on the three
objects, including ground surfaces, facades, and roofs. Maps
provide a global view of the discrepancy between the two sub-
clouds and highlight the deviations in the different areas of the
object between them, while histograms with the Gauss distri-
bution offer statistic parameters, including mean and standard
deviations.
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Fig. 8 C2C distance histograms with Gauss distribution and C2C distance maps of three objects: ground surfaces from Case:
a — Nadir (NG); b — Oblique (OG); ¢ — Nadir-Oblique (NOG); d — Nadir (NR); e — Oblique (OR); f — Nadir-Oblique (NOR)

1. Comparison between three objects.

It is observed from Fig. 9 that in all three cases, the facades
had the biggest standard deviation (an average value of
0.279 m), followed by the roofs with an average of 0.050 m,
whereas the ground surfaces had the lowest standard deviation
(0.019 m). Also, the maps in Fig. 10 illustrate that there is a
good congruence between the sub-clouds on ground surfaces
and roofs. For the facades, under close scrutiny, the major dis-
crepancies occur in the lower parts of the facades.

2. Comparison between three cases N, O, and N + O.

For the ground surfaces, it is observed that all three cases
produced a standard deviation of 0.019 m, but Case N had a
slightly bigger mean than Case O, and Case N + O produced
the biggest mean of 0.031 m. For the roofs, Case N + O had the
biggest standard deviation, followed by Case O and N, with
the standard deviations of 0.075, 0.051, and 0.026 m, respec-
tively. Six facades were investigated for Cases O and N + O as
Case N produced very poor point clouds. The reason for large
gaps on the point cloud of facades from Case N was probably
lower image coverage on the facades when the drone flew with
the single flight direction pattern. Fig. 9 shows that the stan-
dard deviations of six facade sub-clouds ranged from 0.155 to
0.484 m and from 0.122 to 0.444 m for Case O and N + O, re-
spectively.

136

Table 5 reports that Case O has the highest density of
points, followed by Cases N + O and N. This is because Case
O captured images with the highest resolution, a GSD of
0.6 cm, whereas that of Case N was 2.7 cm. For Case O, the
facades have the highest point density, followed by the roofs
and the ground surfaces, with 8.8, 6.5 and 6.3 points per dm?,
respectively. With Case N, the point density drastically de-
creased to 2.3, 2.1 and 1.8 points/dm? for the ground surfaces,
roofs, and facades, respectively. Case N + O generated a point
density that was slightly lower than that of Case O but signifi-
cantly higher than that of Case N, with a cloud density of
5.9 points per dm? for the facades and 5.6 points per dm? for
both the ground surfaces and roofs. Besides, it can be seen that
from the ground to the top, while Cases O and N + O showed
an upward trend in the cloud density, Case N had an opposite
trend.

In term of the density decrease rate, Table 6 shows that
Case N produced point clouds with the best accuracy as the
average density decrease rate ranges from 0 to 1 point/dm?.
Case O generated point clouds with the lowest accuracy be-
cause their average cloud density decrease rate of point clouds
was between 0.1 and 7.1 points/dm?, while the point clouds
from Case N + O had a rate ranging from 0 to 4.7 points/dm?>.
In a comparison between the three objects, it can be seen that
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Fig. 10. C2C distance maps of six facades from Case Oblique (OF) and Case Nadir-Oblique (NOF)
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Fig. 9. C2C distance histograms with Gauss distribution of six facades from Case Oblique (OF) and Case Nadir-Oblique (NOF)
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Table 5
Average cloud density of point clouds
Mean cloud density (points/dm?)
Objects
Case N Case O Case N+ O
Ground 2.3 6.3 5.6
Roof 2.1 6.5 5.6
Facade 1.8 8.8 5.9
Table 6
Average cloud density decrease rate of point clouds
Cases | Mean cloud density decrease rate (points/dm?)
No
Objects N 0 N+O
1 | Ground 0 0.1 0
2 | Roof 0.4 2.5 1.8
3 | Facade 1.0 7.1 4.7

the ground surfaces had the lowest rate and the facades had the
largest rate in all three cases. The largest rate is 7.1 points/dm>
for the facades found in Case O.

Conclusions. This paper presents the quality assessment
of 3D modeling of industrial buildings generated by the UAV
photogrammetry method. Two UAV flight modes, including
the linear and circular flights, were performed for capturing
the nadir and oblique images, respectively. There were three
study cases regarding the type of UAV images, including
Case N using the nadir dataset, Case O using the oblique
dataset, and Case N + O using both nadir and oblique datas-
ets. In each case, the imagery dataset was used for generating
point clouds with the UAV-SfM workflow. The point cloud
model of three main objects, namely ground surfaces, fa-
cades, and roofs, were examined in their accuracy and point
density. For the accuracy assessment, CPs measured by a to-
tal station and the TLS point clouds were used as the refer-
ence data. While CPs coordinates were used to compute
RMSEs, C2C distances between UAV and TLS clouds de-
scribed in standard deviations and means, as well as the point
density decrease rate, were used for a more detailed analysis
of cloud precision. The study arrives at the following conclu-
sions:

Case N produces the most accurate but the least dense
point clouds with large gaps on facades, so it is not suitable for
recording features exposed along vertical facades. This con-
clusion confirms comments found in [12, 26, 27].

The oblique generates point clouds with the highest level
of density but the lowest accuracy compared to the nadir and
combined cases, especially regarding the facades.

When combining the dataset of both flight modes, the gen-
erated point clouds take advantage of individual mode. Spe-
cifically, the point cloud’s accuracy is higher than that of Case
O, and its density is much higher than that of Case N.

The point clouds of ground surfaces and roofs have a good
congruence, while opposition is seen in those of facades.

In general, an approach of combining the nadir and
oblique imagery is optimal to build exceptional accurate and
dense point clouds of buildings.
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Ouinka gKocTi TPMBUMIPHOT XMapu TOYOK
NMPOMHUCJIOBUX Oy/iBeIb HA OCHOBI 300pakeHb
IJIAHOBOI Ta mepcrneKTuBHOI 3iioMku BILJIA
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Meta. OcHOBHa MeTa JaHOI POOOTU — OLIHUTHU SKiCTb
3D-moneni mpoMucIoBUX OymiBeab, CTBOPEHOI HAa OCHOBI
psany naHux Oe3mizoTHUX JitanbHux amnapatiB (BITJIA),
Bkmovaroun gaHi BITJIA y minaHoBiit 3itomiii (Haoup (H)), y
nepcrekTuBHii 3iiomui (IT), a TakoxX y T1aHOBIl i mepcnek-
TtuBHii 3itomui (H + IT).

Metomuka. SIkicte 3D-Mozesni BU3HAYa€ThCI TOYHICTIO
Ta WIUIBHICTIO XMap TOYOK, CTBOPEHMX Ha OCHOBi 300pa-
xkeHb BITJIA. I3 nieto meToio BITJIA OyB po3ropHyTuii st
OTPUMAaHHS 300paxkeHb y PeXMUMaxX MOJbOTY SIK TUIaHOBOI,
TakK i MepCcrneKTUBHOI 3MOMKU HaJl TPOMUCIOBUM pallOHOM
BUIOOYTKY KOPUCHUX KOTAJIWH, 1[0 MiCTUTh BEXY IIaXTH,
3aBOJICHKi KopItycu Ta odicHi Oyaiai. OliHKa SIKOCTi Mpo-
BoIMJIACS JIsI TPMBUMIPHOI MOZENi XMapu TOUYOK TPbhOX
OCHOBHMX O0’€KTiB, TakKMX SIK JOaxu, ¢acaaud il MoBepxHi
3eMJIi, 3 BUKOPUCTAHHSIM XMap KOHTpoabHUX To4oK (KT) i
HazeMmHoro JazepHoro ckaHyBaHHs (HJIC) B sgkocTi eta-
JIOHHMX HabopiB maHux. CepeqHbOKBAAPATUUYHE MOXUOKMN
(CKII) Oynu po3paxoBaHi 3 BUKOPUCTAHHSIM KOOpAMHAT
KT, a BiacTani Big xMapu 10 xMapu OyJ1 po3paxoBaHi 3 BU-
kopuctaHHsIM xmap Toyok HJIC, nio 3actrocoByBanucs st
OLiHKU TOYHOCTI.

PesyabraTn. Pe3dynbraTu nokasanu, 1110 MOJAEIb XMapu
TOYOK, CTBOpEHa B pexxumi 1oaboty H, Oyna HaiOiab1I TOU-
HOIO, ajie HaliMeHIII 1IIbHOIO, TOMi SIK Mojeb y pexumi I1
MokKasajla HaliMeHIIl TOYHMI, ajie HalOUIbII JeTali30BaHUt
piBeHb Y MOPiBHSAHHI 3 iHMMU. KpiMm Toro, kombGiHallis Ha-
oopiB nanux I1 i H nae nepeBaru okpemMoro pexxumy, OCKijib-
KM TOYHICTh XMapu TOYOK BHILE, HixX y pa3i I1, a fioro miiib-
HicTh HabaraTo BuIle, HiX y pa3i H. OTke, BoHa onTUMaabHa
IJIS1 CTBOPEHHSI BUKJIIOYHO TOYHMUX i IIUJIBHUX XMap TOYOK
OyniBesb.

HaykoBa HoBU3HA. Y poOOTi MPOBOAUTHCS MOPiBHSIBHUI
aHaJli3 SIKOCTi XMapu TOYOK JIaxiB i (pacaniB, CTBOPEHOIO 3a
nornomoroto dhortorpammetpii BITJIA nist BupoOHUUMX Oymi-
BeJIb FPHUYOI TIPOMUCIOBOCTI.

IIpakTiyna 3HayumicTb. Pe3ynbTatv AoCHiIKeHHST MO-
XKyTb OyTM BUKOPMUCTAHI B SIKOCTI TOBIIKOBUX MaTepialliB K
1151 ipakTuKu gociimkenHs BITJIA, tak i ans nogaTkiB xmMa-
pu ook BITJIA. Y poGoTi mpencraBieHa KoprcHa iHhopma-
1is 1uis TuiaHyBaHHS noJiboTiB BITJIA, abo Toro, siki Touku
BIUJIA cain interpysatu B Touku HJIC nisg orpumaHHS Hali-
Kpaloi XMapu TOYOK.

Kmovosi cinoBa: HI1JIA, nepcnekmuesnuii, Haoup, 3D-mooe-
NI0BAHHS, HA3EMHe Na3ePHe CKAHYBAHHSA, OYIHKA AKOCMI
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