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QUALITY ASSESSMENT OF 3D POINT CLOUD OF INDUSTRIAL BUILDINGS 
FROM IMAGERY ACQUIRED BY OBLIQUE AND NADIR UAV FLIGHTS

Purpose. The main objective of this paper is to assess the quality of the 3D model of industrial buildings generated from Un­
manned Aerial Vehicle (UAV) imagery datasets, including nadir (N), oblique (O), and Nadir and Oblique (N+O) UAV datasets.

Methodology. The quality of a 3D model is defined by the accuracy and density of point clouds created from UAV images. For 
this purpose, the UAV was deployed to acquire images with both O and N flight modes over an industrial mining area containing 
a mine shaft tower, factory housing and office buildings. The quality assessment was conducted for the 3D point cloud model of 
three main objects such as roofs, facades, and ground surfaces using CheckPoints (CPs) and terrestrial laser scanning (TLS) point 
clouds as the reference datasets. The Root Mean Square Errors (RMSE) were calculated using CP coordinates, and cloud to cloud 
distances were computed using TLS point clouds, which were used for the accuracy assessment.

Findings. The results showed that the point cloud model generated by the N flight mode was the most accurate but least dense, 
whereas that of the O mode was the least accurate but most detailed level in comparison with the others. Also, the combination of 
O and N datasets takes advantages of individual mode as the point cloud’s accuracy is higher than that of case O, and its density is 
much higher than that of case N. Therefore, it is optimal to build exceptional accurate and dense point clouds of buildings.

Originality. The paper provides a comparative analysis in quality of point cloud of roofs and facades generated from UAV pho­
togrammetry for mining industrial buildings.

Practical value. Findings of the study can be used as references for both UAV survey practices and applications of UAV point 
cloud. The paper provides useful information for making UAV flight planning, or which UAV points should be integrated into TLS 
points to have the best point cloud.
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Introduction. A three­dimension (3D) map is defined as a 
computer representation of a 3­D integrated geo­data model 
with cartographic content [1]. 3D maps play nowadays an in­
creasingly important role in planning, designing, operating, 
and managing urban areas, including cities, towns and indus­
trial zones [2–4]. In order to build a 3D map, a Digital Terrain 
Modeling (DTM) of the area is necessarily generated. Also, all 
objects located in the mapping area are needed to be modeled 
in the 3D space.

To date, 3D mapping or modeling has received consider­
able attention from both scientists and managers. There have 
been many technologies involving 3D mapping ranging from 
traditional ground surveying such as total station and GNSS to 
a new generation of remote sensing technologies, including 
Laser Imaging Detection and Ranging (LIDAR) and UAV [5, 
6]. While traditional methods can produce a high accuracy but 
a poor density level of datasets, LIDAR and UAV can offer 
reasonable/exceptional accuracy and high­density datasets 
[7]. In addition, both LIDAR and UAV can create clouds of 
millions of 3D points with exceptional accuracy at quick times, 
so they are more effective than the total station and GNSS [7]. 
However, while LIDAR technology is still high cost, especially 
for the highly temporal data collection, the availability of low­
cost UAV systems allows it to become a common approach to 
3D mapping of urban areas.

When the UAV photogrammetry is chosen as a method of 
data collection for 3D mapping, there are two common UAV 
flight modes regarding the angle of the camera axis, including 

nadir and oblique. While using the former, the UAV camera 
captures images with its axis along the vertical direction; for 
the latter, the images are shot with the camera axis at an angle 
with respect to the vertical (a camera inclination angle). In 
general, a UAV survey is often conducted with the nadir mode, 
but for 3D mapping of objects with a large vertical dimension 
such as towers, buildings, the oblique mode is more popular 
[8–11]. However, in 3D mapping of a large area, a combina­
tion of the two modes is usually performed using the nadir 
mode with linear flight patterns covering the whole area and 
the oblique one with orbital flight patterns focusing on high 
and/or complex objects [12–14].

So far, there have been numerous works focusing on the 
influence of camera inclination angle on the accuracy of 3D 
modelling. Several studies focused on oblique camera angles 
ranging from 05 to 35° and 3D mapping natural objects such as 
a deglaciated terrain with layers of siltstone and fine­to­medi­
um­grained sandstone [12], from 10 to 20° and 3D mapping 
rocks [15], from 20 to 30° and 3D mapping forests [16], from 
25 to 30° and mapping a coastal cliff surface [15], from 45 to 
65° and mapping a coastal erosion scarp [17]. Other works fo­
cused on the 3D high­level­of­detail reconstruction of his­
torical architectures, such as using an oblique angle of 45° [18], 
and 90° [19] for 3D modeling of heritage buildings. Another 
work used a tilt angle of the camera of 45° to 3D mapping a 
large area of the French city, Bordeaux [20]. Overall, the cam­
era axis angle in a 45–90° range is often chosen for 3D map­
ping buildings.

In 3D modeling buildings, there are three main objects 
that should be considered, including facades, roofs, and the 
ground surface surrounding buildings as they influence the 



132 ISSN 2071-2227, E-ISSN 2223-2362, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2021, № 5

quality of building documentation. The analysis may centre on 
the quality of the 3D model containing the accuracy and the 
density of the point cloud model. In industrial regions, factory 
buildings are one of the main features of these areas. They are 
often built in large sizes, with industrial materials, flat roofs, 
jutting edges, and polished surfaces, and partly contribute to 
the architecture of the region. However, so far, not many UAV 
based mapping studies have provided any comparative analysis 
of the 3D model of factory buildings regarding the three above 
objects generated from the UAV­Structure from Motion 
(UAV­SfM). The homogeneity of surfaces of factory housing 
might be one of the error sources in the UAV based 3D map­
ping. In this study, the quality of 3D point cloud models of 
facades, roofs, and surrounding ground surfaces was exam­
ined. The study aims to compare the accuracy and density of 
point cloud models generated from three cases of UAV image 
blocks, including the nadir imagery (Case N), the oblique im­
agery (Case O), and the combined nadir and oblique imagery 
(Case N + O).

Study area and data collection. Study site. In this study, the 
ground area of the Nui Beo underground coal mine was se­
lected as the study area. This area is located in Quang Ninh 
province, Vietnam. Its area is about 12 hectares and features 
5–6 story buildings and two mineshaft towers (Fig. 1). The 
construction of the two mine shafts began in 2012 and was 
completed in 2016. The designed capacity of coal production 
is approximately two million tons of coal per year. According 
to the design, the primary shaft is dug from the elevation of 35 
to - 410 m, equipped with cages to transport coal. The second­
ary shaft is dug from the elevation of 35 to - 370 m, equipped 
with cages for transporting people, equipment, and construc­
tion materials. On the ground, only the wall of office buildings 
is built with bricks, while all roofs and the walls of factory 

buildings are built with metal materials. This industrial mining 
architecture is quite popular.

Survey equipment. For data collection in this study, three 
survey instruments, including a DJI Inspire 2 drone, a FARO 
FOCUS3D X130 laser scanner, and a Leica FlexLine TS09 to­
tal station were employed. These instruments were technically 
checked and validated to be at the ready­to­use status.

The camera mounted on the drone is crucially important 
as it contributes to the accuracy of resulting 3D models directly. 
In this study, the UAV camera is a Zenmuse X4S with a CMOS 
1” sensor, 24 MegaPixel, a focal length of 8.8 mm/F2.8­11, and 
a FOV of 84° (Fig. 2).

In order to evaluate the accuracy of 3D models generated 
from UAV, two assessment methods are using several check­
points and dense point clouds. The acquisition of these refer­
ence datasets was performed using a Leica FlexLine TS09 total 
station and a FARO FOCUS3D X130 laser scanner (Table 1).

Data collection. The data collection began with the mea­
surement of ground control points (GCPs), checked points 
(CPs) and TLS targets in the VN­2000 coordinate system. The 
distribution of GCPs and CPs is shown in Fig. 3. There were 
23 ground points measured by a Leica FlexLine TS09 (Ta­
ble 1) with seven, four, and nine of them being used as CPs for 
the accuracy assessment of the nadir, oblique, and nadir and 
oblique cases, respectively (Figs. 3, a, b, c). The positional ac­
curacy of these points was at the subcentimeter precision.

Several GCPs and CPs were chessboard markers placed on 
both ground surface and facades (Fig. 4). Their positions were 
measured using the Leica FlexLine TS09 total station in the 
non­prism mode for façade markers and the prism mode for 
ground markers. In addition to the purpose of georeferencing 
the TLS and UAV data, some of them were used for the align­
ment of UAV and TLS point clouds.

a b

Fig. 1. Study area:
a – Industrial yard of an underground coal mine (within the yellow boundary line); b – TLS scan locations (red dots)

a b

Fig. 2. UAV equipment:
a – DJI Inspire 2 drone; b – Zenmuse XS4 camera
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UAV flights for data collection were planned and operated 
using DJI GS Pro, a DJI UAV software installed on an Ipad. 
There were three flight plans, including one linear flight and 
two circular flights. While the linear flight plan was to acquire 
nadir images over the whole study area (Fig. 5, a), the circular 
one was to capture oblique images of the centre area with of­
fice buildings and the secondary mine shaft tower (Fig. 5, b).

Several important flight plan parameters were set up for 
each plan, such as flight height, image overlaps, camera optical 
axis angle. However, for circular flights, these parameters were 
extensive to flight radius and building radius, which are the 
distances from the centre of flight circular orbits to the drone 
and the boundary of focusing building. In addition, while the 
ground sample distance (GSD) of images is defined by the 
flight altitude in the linear flight mode, it is dependent on both 
the flight radius and altitude in the circular one. The drone was 
automatically operated in a stop­and­go mode, meaning the 
drone hovers before its camera shoots each image. This could, 
therefore, reduce negative impacts on the subsequent photo­
grammetric results. Table 2 compiles these important param­
eters and summarises the result of UAV data collection.

TLS survey was designed with eight external scans at the 
ground level (Fig. 1). Therefore, some parts of the second 

Table 1
Laser scanner and total station specifications

FARO FOCUS3D X130
Range of 

Measurement
90 %

reflectivity 0.6–130 m

Distance Accuracy ± 2 mm

Scanning Rate (points/
second)

Up to 
976 000

Field of View 360 × 300°
Camera Resolution 70 MPixel
Tilt Unit Type Dual axis 

compensator
Range ± 5°

Leica FlexLine TS09

Angle measurement 
accuracy

1”

Distance 
measurement 
accuracy
Reflectorless

Prism 1.5 mm +
2 ppm

2 mm +
2 ppm

Fig. 3. Distribution of GCPs and CPs for:
a – the nadir; b – oblique; c – nadir and oblique cases

a b c

a b

Fig. 4. Markers placed on (a) the ground and (b) the faсade

a b

Fig. 5. Planning and performing:
a – the linear flight for the nadir image acquisition; b – the circular flight for the oblique image acquisition
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mine shaft tower, such as roofs, could not be captured. How­
ever, many roofs of the surrounding buildings were sufficiently 
captured for the reference data used for the comparison of 
roofs (Fig. 6). The TLS point clouds of the ground surface, 
facades, roofs were used as the reference data to assess the 
quality of the entire 3D point clouds of these three objects, 
processed from the UAV imagery data.

Methodology. Fig 7 summarizes the study’s workflow 
which can be divided into three parts, including data acquisi­
tion, UAV and TLS data processing, and the quality assess­
ment of point clouds. While the first part is described in sec­
tions 2.2 and 2.3, the others are presented in the following 
sections.

Structure from Motion (SfM) – photogrammetric process-
ing. The SfM photogrammetry processing contains the fol­
lowing steps [21]: 1) Identification of keypoint features in im­
ages through the use of algorithms such as the Scale­Invariant 

Feature Transform (SIFT) [22]; 2) Images features matching; 
3) Internal and external camera orientation; 4) Point cloud 
generation through dense image matching algorithms [23, 24].

In this study, the UAV SfM processing software was Agi­
soft Metashape (Agisoft LLC., St. Petersburg, Russia). Table 3 
summarizes the computation parameters of the software. 
There were three scenarios of UAV dense cloud building, in­
cluding the nadir (N) UAV, the oblique (O) UAV, and the na­
dir and oblique (N + O) UAV. Therefore, there would be three 
times processing these image blocks collectively.

In order to avoid any possible errors caused by GCP­based 
georeferencing to the accuracy of UAV and TLS point clouds, 
there was the case of no GCP in generating UAV and TLS 
point clouds. Therefore, the alignment of UAV and TLS point 
cloud is necessarily performed before classifying and extract­
ing the UAV and TLS point clouds of ground surfaces, fa­
cades, and roofs. This work contains two steps, including 
coarse and fine alignments.

All TLS scans were processed and registered using the 
FARO Scene software before exporting their point clouds in 
the E57 format. The UAV and TLS point clouds in the E57 
format were imported into the RECAP Pro software of AU­
TODESK to identify targets on facades and ground surfaces 
which in turn were used for the coarse alignment step. For the 
fine alignment, the algorithm of iterative closest point (ICP) 
[25] was used. The alignment was performed in the open­
source software, CloudCompare.

Quality assessment of UAV point clouds. In this study, the 
quality refers to the accuracy and density of the UAV point 
clouds. Therefore, the quality assessment of the UAV point 
clouds includes the accuracy assessment and the calculation of 
point density. For the former, there were two accuracy assess­
ment methods, including one based on CPs and another one 
based on cloud to cloud distances between UAV and TLS 
point clouds of ground surfaces, facades, and roofs.

Accuracy assessment based on CPs. In order to evaluate the 
accuracy of UAV point clouds generated by different flight 
configurations, including N, O, and combination of N and O, 
the Root Mean Square Error (RMSE) for X, Y, Z, X.Y., and 
XYZ were calculated, using the following equations
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Table 2
Flight plan parameters and UAV data
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Fig. 6. TLS point clouds of the ground surfaces, roofs, and fa-
cades used for the accuracy assessment of UAV point clouds 
of these objects

Fig. 7. Schematic workflow of quality assessment of UAV point 
clouds

Table 3
Computation parameters of the software

Agisoft Metashape Workflow Align Photos

Accuracy High

Generic preselection Enabled

Key point limit 40,000

Tie point limit 4000

Reference Settings

Marker accuracy (m) 0.005

Maker accuracy (pix) 1

Tie point accuracy (pix) 2

Dense Cloud Building

Quality High

Depth filtering Mild
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where n is the number of CPs; XCPi and XDSM are the X­coordi­
nate component of CPs and corresponding coordinate in Dig­
ital Surface Model (DSM ), respectively; YCPi and YDSM are the 
Y­coordinate component of CPs and corresponding coordi­
nate in DSM, respectively; ZCPi and ZDSM are the Z­coordinate 
component of CPs and corresponding coordinate in DSM, 
respectively.

Calculation of cloud – cloud (C2C ) distances. Because of the 
much higher accuracy and density, the TLS point cloud was 
used as the reference data in this study. After aligning the UAV 
point clouds to the TLS one, the classification of both TLS and 
aligned UAV point clouds into ground surfaces, facades, and 
roofs were performed. At the next step, the cloud­to­cloud dis­
tances between classified UAV and TLS clouds were calculat­
ed. There are several computation methods such as nearest 
neighbour distance and local model­based distance. The for­
mer is simple as the system searches the closest reference point 
of each point in the compared cloud before calculating the Eu­
clidean distance between this pair of points. If the reference 
point cloud is with a high density, this method can be used. 
However, if the reference point cloud is not dense enough, the 
nearest neighbour distance method might result in low accu­
racy. In this case, a model of reference surface is built by math­
ematically fitting it on the nearest point and several of its neigh­
bours before computing the distance from the comparing point 
to this model. In this study, a high quadratic function was cho­
sen as it is more precise than others, such as the least square 
fitting plane and 2D1/2 Delaunay triangulation.

Point density decrease rate. In order to properly evaluate 
the effectiveness of each method, in addition to the CPs and 
cloud­cloud distance­based accuracy assessment methods, a 
point density decrease rate was used. With the assumption that 
all cloud points with the cloud­cloud distance of smaller than 
0.1 m would be excluded, the point density decrease rate was 
calculated using the following formula

∆m = m1 - m2,

where ∆m is the point density decrease rate; m1 and m2 are the 
cloud densities of pre­excluded and post­excluded point 
clouds. The point density decrease rate indicates that the big­
ger it is, the less precise the point cloud is.

Results and discussions. The UAV survey was completed 
with a total number of 327 images on a scale of 5472 × 3648, 
including 125 nadir ones and 202 oblique ones. The TLS sur­
vey resulted in the data of eight scans. The two datasets were 
processed using the workflow in Fig. 9. UAV generated 
6 600 186 points, 24 170 293 points, and 32 526 599 points for 
the Nadir (N), Oblique (O), and Nadir and Oblique (N + O) 
combination, respectively. TLS generated 172 684 627 points 
with the registration error of 8 mm. Table 4 summarizes the 
accuracy assessment of UAV point clouds, with three cases of 
N, O, and N + O.

Table 4 reports that the number of CPs used for the accu­
racy assessment is different between the three study cases. 
Case N used seven CPs and resulted in RMSEs of X, Y, X.Y., 
and Z, and XYZ equalling 2.4, 3.0, 3.9, 3.8 and 5.5 cm, respec­
tively. Case O used just four CPs, and RMSEs of X, Y, X.Y., 
and Z, and XYZ equalling 1.7, 6.1, 6.4, 3.0 and 7.0 cm, respec­
tively. Case N+O used the biggest number of nine CPs, and 
RMSEs of X, Y, X.Y., and Z, and XYZ equalling 2.7, 4.1, 4.9, 
4.6 and 6.7 cm, respectively. By comparison in RMSEs of X.Y. 
(the positional accuracy), the results demonstrated that Case 
N was the most accurate one, followed by Case N + O, and 
Case O. However, by comparison in RMSEs of Z (the vertical 

accuracy), Case O was the most accurate one, followed by 
Case N, and Case N + O.

However, the difference between the number of CPs 
among the three cases might not be compatible with the above 
comparisons. Therefore, if using two common CPs, namely 
T5 and T8, it can be seen that Case N was the most accurate in 
both vertical (Z ) and horizontal dimensions (X.Y.). When 
making a comparison between Case O and Case N+O, two 
more CPs placed on the elevated parts of the mine shaft tower 
were used. The results showed that Case N + O were more ac­
curate than Case O, with RMSEs of 5.3 and 6.3 cm in the 
horizontal dimension (X.Y.), and RMSEs of 1.4 and 3.0 cm in 
the vertical dimension (Z), respectively.

In the next step, comparisons between the UAV photo­
grammetric point clouds and the TLS reference one were per­
formed by Cloudcompare software. For this purpose, the UAV 
clouds were registered to the TLS one using the ICP algo­
rithm. This process resulted in the registered UAV clouds with 
an accuracy of approximately 0.04 m. The classification was 
conducted of UAV and TLS point clouds into three objects, 
including ground surfaces, facades, and roofs. Each sub­cloud 
of these objects extracted from Cases N, O, and N + O was 
used as the compared cloud of comparisons.

Fig. 8 represents the histograms of C2C distances with the 
Gauss distribution and the C2C distance maps on the three 
objects, including ground surfaces, facades, and roofs. Maps 
provide a global view of the discrepancy between the two sub­
clouds and highlight the deviations in the different areas of the 
object between them, while histograms with the Gauss distri­
bution offer statistic parameters, including mean and standard 
deviations.

Table 4
Results of CP based accuracy assessment

Cases CPs
Error, cm

X Y XY Z XYZ

Nadir

T1 3.3 -1.9 3.8 -1.9 4.2

9 -3.2 -2.2 3.9 -0.4 3.9

23 -2.3 -0.9 2.5 -3.8 4.6

15 -0.4 -6.1 6.1 2.0 6.4

14 2.6 -3.9 4.7 9.2 10.3

T5 2.2 -1.2 2.5 -0.6 2.6

T8 1.1 -0.4 1.1 0.1 1.1

RMSE 2.4 3.0 3.8 3.9 5.5

Oblique

A013 -0.1 8.5 8.5 0.3 8.5

T14.1 2.6 7.4 7.9 -2.2 8.2

T5 -1.9 -4.7 5.0 -4.9 7.0

T8 -1.1 -1.3 1.7 -2.7 3.2

RMSE 1.7 6.1 6.4 3.0 7.0

Nadir +
Oblique

T1 4.1 -3.6 5.5 -3.5 6.5

9 -3.2 -1.9 3.8 -0.8 3.9

23 -2.1 -0.5 2.2 -4.4 4.9

14 3.2 -3.6 4.8 11.7 12.7

15 0.0 -5.6 5.6 3.1 6.4

A013 -3.4 7.6 8.3 1.2 8.4

T14.1 -0.5 3.5 3.6 -0.3 3.6

T5 3.0 -3.4 4.5 -2.5 5.2

T8 1.7 -2.8 3.3 -1.0 3.5

RMSE 2.7 4.1 4.9 4.6 6.7
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1. Comparison between three objects.
It is observed from Fig. 9 that in all three cases, the facades 

had the biggest standard deviation (an average value of 
0.279 m), followed by the roofs with an average of 0.050 m, 
whereas the ground surfaces had the lowest standard deviation 
(0.019 m). Also, the maps in Fig. 10 illustrate that there is a 
good congruence between the sub­clouds on ground surfaces 
and roofs. For the facades, under close scrutiny, the major dis­
crepancies occur in the lower parts of the facades.

2. Comparison between three cases N, O, and N + O.
For the ground surfaces, it is observed that all three cases 

produced a standard deviation of 0.019 m, but Case N had a 
slightly bigger mean than Case O, and Case N + O produced 
the biggest mean of 0.031 m. For the roofs, Case N + O had the 
biggest standard deviation, followed by Case O and N, with 
the standard deviations of 0.075, 0.051, and 0.026 m, respec­
tively. Six facades were investigated for Cases O and N + O as 
Case N produced very poor point clouds. The reason for large 
gaps on the point cloud of facades from Case N was probably 
lower image coverage on the facades when the drone flew with 
the single flight direction pattern. Fig. 9 shows that the stan­
dard deviations of six facade sub­clouds ranged from 0.155 to 
0.484 m and from 0.122 to 0.444 m for Case O and N + O, re­
spectively.

Table 5 reports that Case O has the highest density of 
points, followed by Cases N + O and N. This is because Case 
O captured images with the highest resolution, a GSD of 
0.6 cm, whereas that of Case N was 2.7 cm. For Case O, the 
facades have the highest point density, followed by the roofs 
and the ground surfaces, with 8.8, 6.5 and 6.3 points per dm2, 
respectively. With Case N, the point density drastically de­
creased to 2.3, 2.1 and 1.8 points/dm2 for the ground surfaces, 
roofs, and facades, respectively. Case N + O generated a point 
density that was slightly lower than that of Case O but signifi­
cantly higher than that of Case N, with a cloud density of 
5.9 points per dm2 for the facades and 5.6 points per dm2 for 
both the ground surfaces and roofs. Besides, it can be seen that 
from the ground to the top, while Cases O and N + O showed 
an upward trend in the cloud density, Case N had an opposite 
trend.

In term of the density decrease rate, Table 6 shows that 
Case N produced point clouds with the best accuracy as the 
average density decrease rate ranges from 0 to 1 point/dm2. 
Case O generated point clouds with the lowest accuracy be­
cause their average cloud density decrease rate of point clouds 
was between 0.1 and 7.1 points/dm2, while the point clouds 
from Case N + O had a rate ranging from 0 to 4.7 points/dm2. 
In a comparison between the three objects, it can be seen that 

Fig. 8. C2C distance histograms with Gauss distribution and C2C distance maps of three objects: ground surfaces from Case:
a – Nadir (NG); b – Oblique (OG); c – Nadir-Oblique (NOG ); d – Nadir (NR); e – Oblique (OR); f – Nadir-Oblique (NOR )

a b c

d e f
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Fig. 9. C2C distance histograms with Gauss distribution of six facades from Case Oblique (OF ) and Case Nadir-Oblique (NOF )

Fig. 10. C2C distance maps of six facades from Case Oblique (OF ) and Case Nadir-Oblique (NOF )
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the ground surfaces had the lowest rate and the facades had the 
largest rate in all three cases. The largest rate is 7.1 points/dm2 
for the facades found in Case O.

Conclusions. This paper presents the quality assessment 
of 3D modeling of industrial buildings generated by the UAV 
photogrammetry method. Two UAV flight modes, including 
the linear and circular flights, were performed for capturing 
the nadir and oblique images, respectively. There were three 
study cases regarding the type of UAV images, including 
Case N using the nadir dataset, Case O using the oblique 
dataset, and Case N + O using both nadir and oblique datas­
ets. In each case, the imagery dataset was used for generating 
point clouds with the UAV­SfM workflow. The point cloud 
model of three main objects, namely ground surfaces, fa­
cades, and roofs, were examined in their accuracy and point 
density. For the accuracy assessment, CPs measured by a to­
tal station and the TLS point clouds were used as the refer­
ence data. While CPs coordinates were used to compute 
RMSEs, C2C distances between UAV and TLS clouds de­
scribed in standard deviations and means, as well as the point 
density decrease rate, were used for a more detailed analysis 
of cloud precision. The study arrives at the following conclu­
sions:

Case N produces the most accurate but the least dense 
point clouds with large gaps on facades, so it is not suitable for 
recording features exposed along vertical facades. This con­
clusion confirms comments found in [12, 26, 27].

The oblique generates point clouds with the highest level 
of density but the lowest accuracy compared to the nadir and 
combined cases, especially regarding the facades.

When combining the dataset of both flight modes, the gen­
erated point clouds take advantage of individual mode. Spe­
cifically, the point cloud’s accuracy is higher than that of Case 
O, and its density is much higher than that of Case N.

The point clouds of ground surfaces and roofs have a good 
congruence, while opposition is seen in those of facades.

In general, an approach of combining the nadir and 
oblique imagery is optimal to build exceptional accurate and 
dense point clouds of buildings.
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Оцінка якості тривимірної хмари точок 
промислових будівель на основі зображень 
планової та перспективної зйомки БПЛА
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Мета. Основна мета даної роботи – оцінити якість 
3D­моделі промислових будівель, створеної на основі 
ряду даних безпілотних літальних апаратів (БПЛА), 
включаючи дані БПЛА у плановій зйомці (надир (Н)), у 
перспективній зйомці (П), а також у плановій і перспек­
тивній зйомці (Н + П).

Методика. Якість 3D­моделі визначається точністю 
та щільністю хмар точок, створених на основі зобра­
жень БПЛА. Із цією метою БПЛА був розгорнутий для 
отримання зображень у режимах польоту як планової, 
так і перспективної зйомки над промисловим районом 
видобутку корисних копалин, що містить вежу шахти, 
заводські корпуси та офісні будівлі. Оцінка якості про­
водилася для тривимірної моделі хмари точок трьох 
основних об’єктів, таких як дахи, фасади й поверхні 
землі, з використанням хмар контрольних точок (КТ) і 
наземного лазерного сканування (НЛС) в якості ета­
лонних наборів даних. Середньоквадратичне похибки 
(СКП) були розраховані з використанням координат 
КТ, а відстані від хмари до хмари були розраховані з ви­
користанням хмар точок НЛС, що застосовувалися для 
оцінки точності.

Результати. Результати показали, що модель хмари 
точок, створена в режимі польоту Н, була найбільш точ­
ною, але найменш щільною, тоді як модель у режимі П 
показала найменш точний, але найбільш деталізований 
рівень у порівнянні з іншими. Крім того, комбінація на­
борів даних П і Н дає переваги окремого режиму, оскіль­
ки точність хмари точок вище, ніж у разі П, а його щіль­
ність набагато вище, ніж у разі Н. Отже, вона оптимальна 
для створення виключно точних і щільних хмар точок 
будівель.

Наукова новизна. У роботі проводиться порівняльний 
аналіз якості хмари точок дахів і фасадів, створеного за 
допомогою фотограмметрії БПЛА для виробничих буді­
вель гірничої промисловості.

Практична значимість. Результати дослідження мо­
жуть бути використані в якості довідкових матеріалів як 
для практики дослідження БПЛА, так і для додатків хма­
ри точок БПЛА. У роботі представлена корисна інформа­
ція для планування польотів БПЛА, або того, які точки 
БПЛА слід інтегрувати в точки НЛС для отримання най­
кращої хмари точок.

Ключові слова: БПЛА, перспективний, надир, 3D-мо де-
лю вання, наземне лазерне сканування, оцінка якості
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