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Purpose. The purpose of the article is to create a viscoelastic dynamic model of flexible axially-moving belt of dif-
ferent mechanisms considering the influence of the material mechanical properties on its dynamic characteristics in

case of transverse vibrations.

Methodology. Methodology for flexible belt transverse oscillation investigation is based on asymptotical methods

of nonlinear mechanics and wave theory of movement.

Findings. Analytical relations for amplitude and frequency of transverse vibration definition for flexible viscoelastic
axially-moving belts are obtained in the research. The influence of viscous and elastic belt material properties on its

frequency response is analyzed.

Originality. For the first time, based on a created dynamic model of flexible viscoelastic axially-moving belt, its
dynamic performance during the transverse vibrations is identified analytically and the influence of material me-

chanical properties on these characteristics is studied

Practical value. The offered flexible belt transverse oscillation investigation method allows determining the influ-
ence of longitudinal movement speed and viscoelastic material properties on the main parameters of dynamic pro-
cess. Obtained analytical relations can be the basis for engineering calculations of components and mechanisms, part

of which are axially-moving flexible belts.

Keywords: mathematical model, the wave theory of motion, viscoelasticity, transverse vibrations, belt drive, the pertur-

bation methods

Introduction. Topicality and literature review. The drive
belt as a flexible traction belt drive element is the most im-
portant element that defines transmission efficiency and
durability. Exploitation of the machine belt drives is usu-
ally accompanied by oscillatory processes with increase in
the dynamic loads on the belt. Consequently, its length in-
creases and durability decreases prematurely. Therefore,
study of dynamic phenomena in belt drive flexible elements
is prerequisite for reliable and efficient operation of drives.

The description of the belt dynamics is usually based
on a mathematical model [1—4]. Separately in [1] the
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nonlinear governing equations of motion for viscoelastic
moving belt are established by using the generalized
Hamilton’s principle. In the work [1], based on the lin-
ear viscoelastic differential constitutive law the general-
ized equation of motion is derived for a moving belt with
geometric non-linarites. Also in [3] taking into account
the translation effect by the material derivative and the
nonlinearity by the Lagrangian strain the governing
equation is given. As one-dimension axially-moving
string with viscoelastic properties the belt is considered
in [4]. Thus, the belt can be considered as one-dimen-
sion flexible axially-moving body, which oscillates in
transverse direction.
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Considering the speed of longitudinal movement of the
specified belt usually leads to significant mathematical dif-
ficulties in solving problems. In works [5—7] these difficul-
ties are overcome by adapting the wave theory of motion to
this type of problems. Based on this relatively simple equa-
tions for engineering calculations are obtained. In particu-
lar, one of the fundamental works is [5], in which regarding
the axially-moving one-dimension system the solution of
non-perturbed problem is suggested to submit as a super-
position of two waves with different lengths and the same
frequency. The parameters of these waves are defined in
[6]; analytical solution for two-dimensional flexible axial-
ly-moving bodies is given. In [7] the interaction with the
environment is taken into account for two-dimension case.

However, in these works the belt is considered as com-
pletely elastic. This assumption usually leads to inaccurate
results. In general, the mechanical properties of the belt
depend on the belt design, material and its elements. Belt
elements — the cord, a pillow and wrapper are made from
highly polymeric materials [8]. The behavior of the ma-
jority of polymeric materials under the influence of me-
chanical loadings is considered viscoelastic [4]. There are
plastic deformations that are accompanied by energy dis-
sipation due to internal loss mechanism in the loaded
belts [1, 3]. The dissipation, reducing noise and vibration
affects the dynamic characteristics of moving belts.

Considering the specified, the purpose of this work is
to create a viscoelastic dynamic model of the flexible
axially-moving belt and to research the influence of the
mechanical characteristics of the belt material on the
parameters of its transverse vibrations. It should be not-
ed that a similar objective was formulated in the works
[1, 3, 4], but it is difficult to say that the used methods
for mathematical calculations (finite differences or mul-
tiple scale methods) are proximate. For the analytical
investigation of the influence of viscoelastic belt proper-
ties on amplitude and frequency of its transverse vibra-
tion it is advisable to use the basic idea of works [5—7].

Problem definition. To achieve the goal let us de-
scribe the dynamic processes in the belt as in a flexible
element. The belt is modeled in the form of a one-di-
mensional elastic body. Its transverse vibrations are de-
scribed by differential equation with partial derivatives
that are obtained from Newton’s second law [3]

2
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where u(x, f) is transverse displacement of a cross section
of moving flexible belt with x coordinate in arbitrary mo-
ment of time #; A is cross-sectional area; ¢ is normal stress;

p is density of material; 7'is force of an initial tension.
The subscript in the formulas means differentiation on

ou
the corresponding variable, in particular o is the first

. o . o’u
partial derivative on time # from movement, Py is the first
X

partial derivative on coordinate x from movement, etc.
The equation (1) is written with Lagrange variables.

Considering the occurrence of the longitudinal belt

movement, it is more appropriate to use the Euler coor-
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dinates (spatial coordinates) [1, 6, 9]. In the case, when
the flexible belt moves with constant speed v in the di-
rection of the Ox axis, transition formulas from the La-
grange variables to Euler variables take place [9]

d 0 0dx dx d 0 0

—_———t e — =V =>—=—tV—

dt ot oxdt dt dt ot Ox 2
d> o 0? 0? 2)
— =y
dr? o’ Oxot ox?

where the first term on the right side of the formula (2)
is a local acceleration component, the second is a Cori-
olis acceleration component, and the last is a compo-
nent of centripetal acceleration. Based on this we pres-
ent the differential equation (1) as
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Without the loss of generality, we consider part of a
traction branch of a belt in length /, that equals the dis-
tance between the start point a belt contact to the pulley.
Considering that contact of the belt with the pulleys is
constantly irrevocable, we assume that there are not
transverse displacements in the contacts points of a belt

to pulleys. It enables us to attach boundary conditions
(4) to differential equation (3)

u(x,t)|X:0:u(x, t)lx:l:()- (4)

To count the viscoelastic material characteristics of
the belt we use the linear differential relation of viscoelas-
tic theory, which connects stress o(#) and strain &(7) [3]

o(f) = E"e(2). (%)

In the formula (5) E* is the equivalent to Young’s
modulus that is a certain differential operator with re-
spect to time and takes into account the instantaneous
elasticity, elastic aftereffect and viscosity of material. In
many cases, it is enough to submit viscoelastic behavior
in a limited time frame, considering only one or two
terms of the operator E*.

Only geometric nonlinearity, which takes place due fi-
nite elongation, is considered in this paper. For axially-
moving belt in case of sufficient value of the oscillation am-
plitude the deformation in the longitudinal direction Ox is

2
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Then expression (5) for normal tension takes the form
2
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Considering (7) in (3) we obtain
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Differential equation (8) differs from the equation of
motion of axially-moving purely elastic flexible elements
[5] in the fact that ordinary elastic modulus £, is re-
placed by equivalent modulus E*. Therefore, equation
(8) is the basis for studying transverse vibrations of axi-
ally-moving flexible one-dimensional bodies, elastic
characteristics which are described by arbitrary visco-
elastic law, for example, Kelvin-Voigt, Maxwell, Max-
well-Kelvin and others. Since Drive belts are made from
high-polymeric materials, that expedient representation
of their viscoelastic behavior is Kelvin-Voigt model [3].
According to this model the properties of material are
given in the form of two in parallel connected viscous
and elastic elements. As two elements of model are par-
allel, deformations in them are identical (f) = g,(¢) =
= g,(#). Then the normal stress is equal to the sum of
stresses in each element o(7) = 5,(?) + o,(%).

Taking into account that o,(¥) = Eye(f) and o,(7) =
=ne/f), where n is the coefficient of dynamic viscosity,
we obtain the differential ratio, that connects stress and
strain in case of viscoelastic Kelvin-Voigt model and
equivalent Young’s modulus

0e(1)

o(f) = Ege(t)+n o

. n o
E =E | 1+——|.
0(+antj 9)

Given the (9) differential equation of transverse vi-
brations of flexible moving belt becomes

o%u ou 5, 5. 0%
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where £ =-—"2; nzl; a? =—; A is a small param-
2pA pA Ap

eter, which in the right hand of equation means small value
of nonlinear force component compared to recovery force.
Method of solving. The problem is to find the solution
of equation (10) with boundary conditions (4). The
specified problem belongs to the class of weakly nonlin-
ear, which allows using general principles of perturbation
methods for construction of its solution [10]. According
to one of these methods, in particular Krylov-Bogoly-
ubov-Mitropolsky’s method, we present the solution of
equation (10) in the form of asymptotic series [5, 10]

M(X, t) = U()(aa X, \V) + }"Ul(a: X, ‘1‘/) +
+ A2 Ux(a, x, w) + A5, (11)

where y = of + @; ¢ is the initial phase of oscillation; a is
amplitude; o is frequency; Uy(a, x, ) is the solution of
lineal (when ¢ = 0) analogue of problem (10), (4); U\(a,
x, y), Us(a, x, y) are unknown 2n-periodic on y func-
tions, which satisfy the boundary condition, that derive
from (4), that is

Ul(a’xa W)lx:OZO; Ul(aaxa W)'x:l:O' (12)

Having used the results of the linear axially-moving
models of one-dimensional bodies study, that are ob-
tained in [5] we define the function Uy(a, x, y).
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The single-frequency solution of the nonperturbed
equation (¢ =0), which corresponds to (10), is interpret-
ed in this work as a superposition of two waves (reflected
and direct) with wave numbers k and y, respectively

Uy(t, x,y) = a(cos(kx + of + @) —
— oS (xx — of = ¢)), (13)
where

kn(a—v).

1=

k=12,....
al

These waves have different lengths, identical initial
phases, amplitudes and frequencies.

Due to their finite length driving belts can be referred
to the so-called systems with limited size. It is consid-
ered that in such systems, nonlinear forces influence
only laws of change amplitude and frequency of the dy-
namic process in time [5, 7, 10]. We specify these laws,
in the first approximation, by using ordinary differential
equations which are the following [5—7]

da Cdy -

7 AA(a); I o+AZ(a), (14)
where the right sides, in other words functions A(a), Z(a)
can be found so that formula (11) satisfies the original
equation (10) with the required degree of accuracy, if to
substitute functions of time for the place of parameters a
and y, which are determined by differential equations (14).

Considering the above-mentioned, the single-solu-
tion approach to boundary problem (10), (4) in the first
approximation can be represented as

u(x, 1) = a(cos (kx + y) —
- COS(XX—\V))'F}\.UI(CI,X, \V) (15)
On function U,(a, x, y) and its partial derivatives on
v and x including to the second order the additional
conditions are imposed, namely: these function must

not contain the items proportional to the principal har-
monicas in expansions, that

2n
(v, (a,x,\u){cosw}dw ~0. (16)
0

siny

Twice differentiating by linear and time-variable and
taking into account (14), we get

2
% = —(0{2(02 +200=(a) + A% +.. } +
+20)a{03+ kE(a)} + {lz %A((l) +23 }] X

x(cos(mx + \u) - cos(xx + \Il)) _
_2mXA(a)(sin(Kx + \y) + sin(xx n \y)) "
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O%u(x,t
% = kA(a)(Ksin(Kx+\y)—xsin(xx—\y))+

+a(1<cos(|<x +)+xcos(xx —\u)){—Zam—akE(a)} -
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Substituting obtained relationships in equation (10),
considering (16), after equating of coefficients in the
same powers of A, we obtain the first approach differen-
tial equation, which connects unknown functions U, (a,
X, V), A(a), E(a) with known values

L(U):m262Ul(a,x,\u)+ Uy (axy)
: oy oxoy
2
_(a2 _v2)a Ul(gz’zx’w) = (17)

= /i(a.x,y)+2¥(x)A(a) + 2a0(x)E(a),
where
Y(x) =[(® + xv) sin (kx) + (o — V) sin (xx)];
O(x) = [(o + kv) cos(kx) — (@ — V) cos (yx)]);
i (a X w):Ea3[Ksin(lcx+w)—xsin(xx—\y)}2 X
[X cos(xx \y) K cos(1<x+w)}+2ﬁcoa3 X
x[x cos(xx - w) - COS(KX + W)J x
X[KCOS(KX+\V)+XCOS(XX—\|I>:|X
X[KSin(K‘x + \|1) - Xsin(xx - w)} +
+Hoa’ |:K2 sin(Kx + \y) +2 sin(xx - ‘I’)J X
x[xsin(xx+\p)—xsin(xx—\y)f.
The property (16) enables to obtain the system of al-

gebraic equations which connects unknown functions
from differential equation (17)

2n
Y(x)A(a)+O(x)Z(a) =;—i [ /(@ x,y)cosydy;
N o (18)
OX)A(@) - a¥(X)Z(a) = [ £ita,x,p)ysinydy.
0
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After averaging over linear variable from the system

of equations (18) we obtain
-
Alg)=———x
(@ APV -0?)

121
x_[ j fi(a,x,y) ‘P(x)cosw+®(x)s1n\y}dwdx
00

Al

Ea@)=———x
(@) 4k’ ma(V? —a?)

2n

!
><J j fila,x \u) W(x)siny — (E)(x)cosw}d\ydx
00

Hence, in the first approximation, the dynamic pro-
cess in flexible belt with boundary conditions (4) is de-
scribed by relation (15) in which parameters a and y are
defined by ordinary differential equations

Akt (7v* +6v2ia? + 3ot
da _—Mik'n ( v +6v2a? +3a )03; (19)
dt 8/4at (oc4 - v4)
VEK3T3 (7v* +6v2a? + 30t
W _ o ( )a2. (20)
dt 813a3(0c4+v4)

As is in (20), the first approximation viscoelastic of
the material does not affect the frequency of natural os-
cillations. Then this dependence coincides with the case
when taking into account only the elastic properties of
the material as a non-linear technical law [7].

Research results. Obtained analytical dependencies
enable us to analyze the impact of elasticity module and
the coefficient of dynamic viscosity on the main oscilla-
tion parameters.

For research the V-belt transmission is selected with
four B-type belts of and anode cord, which transfer pow-
er from the engine of 10 kW with rotary speed of a shaft
of the engine equal 1000 s™'. Belt material density p =
= 1304 kg/m?; cross-sectional area of one belt 4 =9.2 x
x 104 sq.m; force of a preliminary tension of 7= 1095 N;
length of the site of a belt / = 0.84 m. The coefficient of
dynamic viscosity n is connected with Jung’s module of
dependence where & is chosen from 0.00001 to 0.01 [4].

In Fig. 1 the influence of the parameter # on the am-
plitude of oscillations in time range from 0 s to 3600 s for

a,m
0.005

0,004
0,003

0,002

0,001

ls
200 400 600 800 1000 1200 1400

Fig. 1. Dependence of the transverse belt oscillation ampli-
tude a on time t for various values of dynamic viscosity

n
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v=7m/s and E,= 1.18 -10® Pas is illustrated. At the time
t = 1440 s the amplitude of oscillations is lower by 26 %
forn = 1.18 - 10° P, by 56 % for n = 5.89 - 10° P and by
68 % for n = 1.18 - 10° P compared with a given initial
amplitude a,=0.005 m.

From the graphics in Fig. 1 it is seen that amplitude
greatly depends on the coefficient of dynamic viscosity
1. For larger values of this parameter amplitude is lower
and speed of its attenuation with time is higher.

In Fig. 2 the dependences of the frequency of natural
oscillations on the longitudinal movement speed for the
initial amplitude of movement a, = 0.005 m and a differ-
ent type of cord are shown (£, = 1.8 - 10® Pas for anode
cord; E, = 3.6 - 10® Pas for polyester cord and E, =
=4.2 - 10® Pas for viscose cord fabric).

The belt material is considered to be linear elastic (1 =
0), because the dependence (20) shows that the coeffi-
cient of dynamic viscosity does not affect the frequency
of oscillation. For larger values of elasticity modulus £
system nonlinearity is stronger and the natural frequency
is greater. With increasing speed of longitudinal belt
movement the frequency of oscillation decreases (Fig. 2).

Conclusions. Obtained analytical and graphical de-
pendencies enable us to make conclusions about the in-
fluence of viscoelastic properties on the main parame-
ters of dynamic process in flexible belts:

1. The speed of the belt longitudinal movement sig-
nificantly impacts the amplitude-frequency oscillations
characteristics. Separately its oscillations frequency in-
creases with the speed of longitudinal movement.

2. The amplitude of fluctuations significantly de-
pends on the viscous belt material characteristics. In
case when the viscosity is ignored (n = 0), amplitude is a
constant value in time.

3. The dynamic viscosity, from the first approxima-
tion, does not affect the frequency of natural oscillations.

4. The speed of amplitude decrease over time is greater
for larger values of n. Having picked up the belt material
with considerable viscosity, we can effectively reduce the
vibration of amplitude without changing the frequency.

5. The Young’s modulus £, does not affect the am-
plitude of oscillation in the first approximation; with £
increasing the natural frequency is increasing, too. So
the choice of cord material can adjust the oscillation fre-
quency of the belt.

o,1l/s
120

115

Ey=42-10%Pas
E,=3,6-10°Pas
110

E,=1,8-10°Pas

105

v, m/s
4 6 8 10 12

Fig. 2. Graphics of change of the belt oscillation frequen-
cy o depending on the speed of longitudinal move-
ment v for different values of elasticity modulus E,
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Meta. CTBOpEeHHS B’SI3KOMPY>KHOI AMHAMIYHOT MO-
JIeJTi THYYKOTO TTO30BXHbBO-PYXOMOTO Tlaca Pi3HUX
MEeXaHi3MiB 3 ypaxyBaHHSM BIUIMBY MEXaHIUHUX BJIac-
TUBOCTEI MaTepiajly Ha MOro AMHAMIUYHi XapaKTepucC-
TUKH Y pa3i MONepeyHnX KOJUBaHb.

Meroauka. MeTonuka MOCHIIKEHHSI MOIEPEeUYHUX
KOJIUBaHb THYYKOTO ITaca 6a3yeThCsl HA aCUMITTOTUIHUX
MeToAax HeJliHiHOI MeXaHiKM Ta XBUJIbOBIl Teopii pyxy.

Pe3ynbTaTu. Y poOOTi 1151 THYUYKUX B’ SI3KOTIPYKHUX
MO3A0BXHbO-PYXOMUX MaciB OTPUMaHi aHaJIiITUYHI 3a-
JIEXXHOCTI IUIS BU3HAYEHHSI aMIUTITYIA ¥ 9acTOTH TI0-
TepevyHnX KojuBaHb. [IpoaHanizoBaHO BIIUB B’SI3KUX
i MpYyXXHUX BJIACTUBOCTE Marepianqy maca Ha KHOro
AMIUTITYTHO-9aCTOTHI XapaKTePUCTUKM.

Haykosa HoBu3Ha. [Tossirae B TOMYy, 1110 BIIepIle aHa-
JIITUYHO Ha IiJACTaBi CTBOPEHOI AMHAMIYHOI MOAEi
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THYYKOTO B’SI3KOIIPYKHOTO ITO3MOBXHBOTO PYXOMOTO
maca BM3HAY€Hi MOTro NUHAMIiYHi XapaKTepUCTUKM TIif
4yac MOMEPEeYHUX KOJIMBAaHb i TOCHIIXKEHO BIUIMB MeXa-
HIYHMX BJIACTUBOCTEN MaTepially Ha 1ii XapaKTEpUCTUKU.

IIpakTHyHa 3HAYMMICTB. 3aTTPONIOHOBaHA METOIMKA
JMOCTiIKEHHS ITONePEeYHUX KOJIMBaHb ITO3I0BXHbBO-PY-
XOMMX THYYKMX MAaciB J03BOJISIE BUBHAYUTH BIUIMB Ha
OCHOBHI MapamMeTpu AMHAMIYHOTO MPOLIECY IIBUAKOCTI
MO3A0BXHbBOIO PYXY Ta B’SI3KOMPY>XHUX BIACTUBOCTEM
matepiany. OTprMaHi aHaJiTUUHI 3aJ1€3KHOCTi MOXYTb
OyTu 6a3010 7151 IHXXEHEPHUX PO3PaXyHKIB BY3JiB i Me-
XaHi3MiB, CKJIAQIOBUMU YaCTMHAMH SIKUX € II0310-
BXXHBO-PYXOMi THYYKi IMacu.

KmouoBi cioBa: mamemamuuna modens, Xeuivoea
meopis pyxy, 8’a3KonpyicHicms, nonepeuri KoaueaHHs,
nacosa nepedaua, memoou 30ypeHs

Heas. Co3pgaHue BSIBKOYNPYroit AMHAMUYECKOI
MOJIEJIU TUOKOTO MPOI0JIbHO-MOIBUKHOIO PEMHS pa3-
JIMYHBIX MEXaHU3MOB C YYETOM BJIUSHUS MeXaHUYe-
CKHX CBOICTB MaTepuaja Ha ero JUHaAMUYECKUE Xa-
PaKTEPUCTUKHU B CIy4yae MOMepevyHbIX KOaeOaHUA.

Metoauka. MeTonvka rcciieqoBaHUS MOMEPEYHBIX
Kose6aHuil TMOKOro peMHs1 0a3upyeTcss Ha aCUMIITO-
THYECKUX METOIAX HEIMHEITHOW MEXaHUKU W BOJHO-
BOI TEOpUHU ABUKEHUS.

Pe3syabratbl. B pabote mjis1 TMOKMX BSI3KOYIPYTUX
MIPOIOJIbHO-TMOABWXKHBIX PEMHE MOTYyYeHbl aHAIUTH -
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YeCcKMe 3aBUCUMOCTH JIJISI OTIPE/ICTICHUS] aMTUTUTYIbI 1
4acTOTHI MOTNIepeYHbIX KojiebaHuii. [Ipoananusuposa-
HO BJIMSIHME BSI3KMX W YIPYTMX CBOWCTB Marepuasa
pPEMHSI Ha ero aMIUIMTYIHO-YaCTOTHBIE XapaKTepH-
CTUKH.

Hayunas HoBu3Ha. 3aKjro4yaeTcsl B TOM, UYTO BIIep-
Bble aHAJTMTUYECKU HAa OCHOBAHMM CO3MAHHOU IHUHA-
MMYECKOI MOJIEIN TUOKOrO BSI3KOYIPYTOTO IMPOIOJIb-
HO-TIOABMKHOTO PEMHS OIpe/ieJieHbl ero TuHaMu4ve-
CKMe XapaKTepUCTUKK BO BPeMsI TTOTIEPEUHBIX KOJieha-
HUI U UCCJIEIOBAHO BIUSIHUE MEXaHUYECKUX CBOMCTB
MaTepuaia Ha 3TU XapaKTepUCTUKHU.

IIpakTnyeckas 3HaynMocThb. [IpenoxxeHHast MeTO-
JIMKa WCCIIeIOBaHUs TIOTNePEUHbIX KOJeGaHUii Tpo-
JOJLHO-TTOIBMKHBIX TMOKMX PEMHE TT03BOJISIET OIpe-
JIeJIATh BJIMSTHME HA OCHOBHBIE TIapaMeTphl TMHAMMYE-
CKOTO Tpoliecca CKOPOCTU MPOLOJBHOIO IBUXKEHUS U
BSI3KOYIIPYTMX CBOMCTB Matepuaia. [lomyyeHHbIe aHa-
JIUTUYECKUE 3aBUCUMOCTU MOTYT OBITh 02301 /11 MH-
>KEHEPHBIX paCYeTOB Y3JIOB U MEXaHU3MOB, COCTaBHBI-
MM YaCTSIMU KOTOPBIX SIBJISIIOTCST ITPOIOJIbHO-TTOIBYIXK-
Hble THOKHWE PEMHU.

Kiouesbie ciioBa: mamemamuueckas mooens, 80AHO-
8as meopusi 08UdNCEHUsl, BA3KOYNPY2OCHb, HONEpe*Hble
Konebauus, pemeHHas nepedaua, memoovt 603MyUuleHULl
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Purpose. Development of the finishing gear hobbing method based on the interaction of the change of the tool
cutting edge and the machined surface.

Methodology. The study includes the method of abstraction based on gear hobbing as the interaction of the tool
cutting edge with the machined surface. In turn, the properties of the interaction of the tool cutting edge and the
machined surface are studied with the help of models under computer simulated conditions.

Findings. The specifications for the finishing gear hobbing method have been assigned. Possible variations of sys-
tem of the tool cutting edge interaction with the machined surface were shown; the level of stability of the cutting
process with specified variations of interaction was determined in terms of computer modeling. A dynamic model of
the tool cutting edge interaction with the machined surface has been created. The model considers the nature (geom-
etry) of the interaction, tension, damping and disturbance of technological system (self-adjustment — tool — compo-
nent part). The directions to increase astatism of system were determined.

Originality. For the first time the gear hobbing modeling method was created which shows the research opportuni-
ties of the tool cutting edge interaction with the cutting surface including the machined surface under conditions of
both their coincidence, and non-coincidence. For the first time the finishing gear hobbing process of involute surfaces
was created in which the cutting surface does not match the determined involute surface and is set at an angle to it.
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