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Purpose. To develop a stable and high-precision algorithm of the dynamic vehicle weighing.

Methodology. The model of the dynamic vehicle weighing systemwas created. Severalkinds of noise that affect the ac-
curacy during measuring were analyzed. The new algorithm of WIM (W eight-In-Motion)was suggested. High-frequency
noise signals were eliminated by Butterworth low-pass digital filter, and then fitted by least squares method based on Leven-
berg-Marquardt optimization algorithm. This allowed the separation of dynamic load and calculation of the static axle.

Findings. The results of application of the algorithm for dynamic vehicle weighing systemhave proved that the pro-
posed algorithmis of high accuracy and steadiness. Based on the analysis of weighing results we adopted the algorithm of

the WIM systems.

Originality. The optimization algorithmmethod has been designed, which can improve the measurement accuracy and

reduce the restrictions of weighing.

Practical value. The suggesteddynamic vehicle-weighing algorithmmay allow controlling the vehicle overloadand over-

run.
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Introduction. With the rapid development of the eco-
nomy, the cargo capacity rises sharply, which results in a
very serious overweight phenomenon in domestic road
transportation. Over weight is the main cause of road dam-
age [1]. Roads are severely damaged, which leads to fre-
quent incidences of vicious traffic accidents and affects
traffic safety. Vehicle weight detection includes static
weighing and dynamic weighing methodology [2]. Alt-
hough static weighing is more precise, in practice the re-
sults are easy to get only when the systemis stable. Dy-
namic weighing can weigh moving vehicles, in which cars
do not have to stop during weighing. Thus, traffic flow
could be ensured smoothly and the axle load could be mea-
sured separately as needed. Furthermore, because of the
smaller weighing platform, the dynamic weighing systemis
easy to install and is costless. However, due to the lower
accuracy of the system than that of the static system, the
speed of the vehicle to be weighed should be limited [3].

The dynamic weighing systemcan be traced back to the
fifties of the twentieth century. The first study of the dyna-
mic weighing system was conducted by the United States
for a period of 16 years. First patented capacitive weighing
sensorwas patented by South Africa in 1968. In the late 60’s
early 70’s the patent right on vehicle dynamic weighing sys-
tem was acquired by France. In the mid 80’s ofthe twentieth
century, American Streetre and British Golden River com-
panies adopted advanced electronic technology, which
was based on the dynamic capacitance-weighing sensor, and
improved the performance ofthe dynamic weighing system
significantly. In the 90’s, with the rapid development of
transportation, the urgent requirement of the weighing sys-
temmet the requirements ofpractical application. The Sys-
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tem Research Laboratory of the European Union highway
(FEHRI)in 1992 in accordance with the EU Transport Com-
missions (ECTD) framework worked out the COST323 plan,
namely the dynamic weighing system for a period of 30
months ofactualapplicationtest [4]. Along with the devel-
opment of science and technology and strengthening of
economy, a large number of dynamic systems have been put
into use. China’s independent research and development
played an important role in the fields of highway automa-
tion, toll by weight, axle load limit detection, law enforce-
ment and others.

The overload, speeding and overweight in mining pro-
vinces is a serious problem; the phenomenon ofoverloading
is misrepresented as legalnorms. Study on thevehicles wei-
ghing systemin domestic research institutions have never
been interrupted. The representative ofthe productin the na-
tional “the eighth five-year plan” period [5], Chongqing
Highway Research Instituteunderthe Ministry of Transpor-
tation, successfully developed the dynamic vehicle weigh-
ing system. This systemis used for dynamic vehicle weigh-
ing of fixed type, can simultaneously detect one to four
lanes the axle load, the error is less than 10%, the confi-
dence level is 95%. Although our dynamic weighing tech-
nology has been developed rapidly, compared with the ad-
vanced countries in the world, there is still a certain gap.
There are aspects thatare not fully mature, such as the accu-
racy of weighing system, costofthe system. Low cost, high
efficiency, high accuracy of weighing systemis the last to
develop technology priority.

The accuracy of the current dynamic weighing system,
of which we only took simple digital filtering process in
signal weighing, is difficult to improve greatly because of
the lack of furthersignal processingtechniques. In this pa-
per, we establish the modelofthe system. Dynamic Weigh-
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ing Systemmodeling combined with the actualsituation, so
that the results will weigh more in line with the actual situa-
tion, may improve the accuracy ofthe weighing results. We
are introducing the optimization algorithm method to im-
prove the measurement accuracy and reduce therestrictions
of weighing.

The principle of the dynamic weighing system. The
designing ofthe system.In this section, we designed a wei-
ghing system to detect the weights of the vehicles on the
road to determine whether they were overloaded, manage
and monitor all of them. Thus, the number of overloaded
vehicles could be reduced effectively. Fig.1 shows the dia-
gramofthe system’s design.

Signal Data
—! conditioning acquisition
circuit circuit

Weighing
Sensor

Computer —>{ Monitor

Fig.1. The system’s design diagram

The hardware platform composition of the system.

(1) Weighing System.

The weighing system is composed of a weighing plat-
form and a weighing sensor. Weighing platformis a metal
plate embedded in the well-paved road, it must be ensured
that only one weighing axle is on it while weighing. The
weighing sensor adopts high-precision strain sensor.

(2) Data acquisition system.

To collect the data and send the collection signal to the
computer system.

(3) Computer system.

The computersystemis used to preprocess data for the
inputted discretized electric signals. Then signals will be
processed with an algorithmto produce the output ofthe dy-
namic weighing results.

(4) External weighing indicator.

The total weight of the vehicle will be displayed on the
external weighing indicator. Fig.2 shows the dynamic
weighing platform.

Velocity

I

Weighing platform

Fig.2. Dynamic Weighing Platform

The software platform composition of the system. After
the weighing datahadbeen converted, sampled and filtered,
the dynamic weighing software completed signal preproces-
sing and weighingresult calculation. Because the design of
the software is related to the algorithmwhich is used, for har-
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dware system, the gross process of the software is broadly
divided into the following steps:

1. The processto signal noise. Low-frequency part ma-
inly comes fromthe vibration signal of the system, includ-
ing bearing plate, bearing shaft and sensor, which is the ma-
in signalto be processed in the dynamic weighing signals.
Intermediate-frequency part mainly comes from the inter-
ference generated by therotation ofthe vehicle itself. High-
frequency part mainly comes fromthe measurement inter-
ference generated by the detection systemitself. It is very
convenient for further signal processing that minimizes the
impact on the low-frequency signal during filtering the me-
dium-frequency noise and high-frequency noise.

2. The processto low frequency interference. In the dy-
namic weighing signals, the useful signal in the low-fre-
quency sectioncontains a kind ofinterference factors, which
have a great influence on the weighing results, i.e. low-fre-
quency interference. The vehicle vibration and the uneven
road are the reasons causing the low-frequency interference.
The frequency of the low-frequency interference generally
ranges 0-30 Hz, and the variationofamplitude can reach the
10% of the static load, which is the weight when the vehicle
is underthe stationary state. So the accuracy ofthe weighing
results cannot be guaranteed if low-frequency interference
was not eliminated. Furthermore, low-frequency interferen-
ce and useful signals are mixed in one frequency band,
which determines that the conventional filtering methods
cannot filter out low-frequency interference. Therefore, the
methods to filter out low-frequency interference are differ-
ent from those to filter out high-frequency noise. The com-
mon method is to fit out the amplitude, frequency and phase
of low-frequency interference using leastsquare method fol-
lowed by filtering out the interference then.

3. Acquiring the real axle load of the vehicle.

Dynamic weighing system model. According to the de-
composition knowledge of the dynamic principle and sig-
nals, the dynamic weighing data is mainly composed of'the

following three parts [6]:

1. Static loads: Static loads are the static weights of ve-
hicles, which are the important data that we need to get.

2. Low-frequency interference: Vehicle vibration caused
by theunevenpavement, which is the dynamic loads we ne-
ed to filter out.

3. High-frequencynoise: Measurementinterference cau-
se by the detection system, i.e. the high-frequency interfere-
nce.

So the weighing data can be expressed as follows

Y(t) = W + A sin(wyt + ) + 3 A4; sin(wt + ;). )]
1

where y(r)is a vehicle weight signal; I is a static load,
which is the actual weight of vehicle; 4, is a vibration ampli-
tude oflow-frequency interference; w, is an angular frequen-
cy oflow-frequency interference; ¢, is an oscillation phase
oflow-frequency interference; 4;is a vibration amplitude of

the i-th noise componentt; w;isan angular frequency of the
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i-th high-frequency noise component; ¢; is an oscillation

phase of the i-th high-frequency noise component.
Fig.3 shows the waveformwhen vehicle tire passing by
the weighing platform.
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Fig.3. The waveform when vehicle tire passing by wei-
ghing platform

The car passes through the weighing platform with a
certain speed and it is weighed. In the forces the car acts on
the platform, many other factors interfere the result except
for the real car weight. Due to the presence of confounding
factors, the real car weight is submerged in interference,
which seriously affects the weighing accuracy. Let us analy-
ze the impacts of dynamic load and driving speed on the ve-
hicle dynamic weighing. There are many reasons causing the
vehicles vibration when cars run [7]. The reasons can mainly
be divided into the three categories as follows:

1. Vibrations caused by various factors of the car itself.
It mainly refers to the vibration caused by the tread pattern
of'tire, the eccentric rotation of the car engine, the instabil-
ity ofdriver’s operations (including speed change, braking,
and steering, etc.) and the non-uniform combustion of
gasoline, etc.

2. Vibrations caused by the uneven road. Because the
road surface has a certain degree of unevenness, a big or
small displacement of vehicles will appear which causes
vehicle vibrations. Especially on the uneven and undulating
roads, the displacement of the car wheels is more serious,
and so is the vibration. It belongs to those caused by une-
venness thatthe vibrations caused by cracks and the joints
between roads and bridges.

3. Vibrations caused by the coupling between vehicles
and roads. When cars are running on the road, they will ap-
ply external force on the road. Under the action of external
force, the road will produce vibrations, which will react on
the cars above and result in coupled vibrations.

After the elimination of low-frequency interference by
the low-pass filtering and optimized algorithms, the weigh-
ing signals should notcontain the interference theoretically.
However, a large number of experiments showed that in
dynamic weighing system, the vehicle speed, at which the
car passes through the weighing platform, has a great im-
pact on the weighing accuracy. Because in the front of the
weighing process and the rearaxles do not pass throughthe
weighing platform at the same time, so the heights of gravi-
ty centerand air resistance pointare different [8]. When the
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car accelerates, the focus will shift backward. While the car
decelerates, the focus will move forward. It can be seen that
the vibration caused by the vehicle itself and the uneven-
ness of the road is one of the key factors affecting the
weighing ac-curacy. The real axle load signalis submerged
in a variety of complex vibration signals. In order to obtain
the real axle load signal, we must eliminate or mitigate
these vibrations according to causes to minimize the impact
on the weighing accuracy.

Filtering of the high-firequencynoise. It is the main task
offiltering techniqueto remove thenoise. According to the
implementation platforms, filtering techniques are generally
divided into two major categories, i.e. hardware filtering te-
chnologyandsoftware filteringtechnology. In hardware fil-
tering, people need to designthe hardware circuit and make a
circuit board. It is expensive and difficult toup-datethealgo-
rithm on the original circuit board, which draws the main
drawbacks. The mostcommonly used method for filtering is
software filtering. In the high-frequency filtering, we usually
make algorithms by designing a low-pass filter. The produc-
tion cost of software filtering is low, and the improvements
of algorithms turn flexible. Meanwhile, the filtering can be
divided into digital filtering and simulated filtering. The rea-
son why the digital filtering is chosen in this paper s thatit is
more precise, stable, and flexible than thatofsimulated filter-
ing, and the non-essential requirement for impedance match-
ing and some special filter functions thatcannot be impleme-
nted by simulation filtering. The digital filter cannot fully im-
plement ideal functions. It cannot implement the mutation
from one frequency band to another frequency band. Only a
transitional zone can be set between the two frequency
bands. The bandstand and bandstand are not strictly 1 or 0,
but to tolerant a narrow range. Accordingto thetransfer fun-
ctions, thecategories of low-pass filters can be divided into
severaltypes, namely Butterworth filter, Kuibyshev Type I
and Kuibyshev Typell, etc. The amplitude-frequency curve
of Butterworth filter, also known as “the flatest” amplitude-
frequency response filter, is monotonically decreasing in
both bandstand and bandstand. Chebyshev filteris generated
by Chebyshevpolynomials to design the filter, where Che-
byshev Type [ shows equiripple vibration within the pass-
band and descends monotonically within the stop band while
Chebyshev Type Il is just the opposite.

In orderto facilitate the subsequent data processing and
toreduce the impact ofhigh-frequency signals on theresults
with consideration of filter passband stability, we have
chosen the Butterworth low-pass digital filter in this re-
search. However, this simple method cannot eliminate two
kinds of errors, one of which is the impact of tire stiffness
on weighing accuracy and the other of which is the impact
of vehicle vibrations on weighing accuracy [9]. Because the
main signals frequencies are mainly in the low-frequency
part,if the-re is a ripple in the filter, it will produce a serious
impact on the results. The main consideration we should
take during selection is to filter out high-frequency interfer-
ence and maintain the main low-frequency signals just the
same as unfiltered before.

Since it is almost clearthat the vibration signals distrib-
ute at different frequencies and the noise sources from dif-
ferent frequencies, we can use a more accurate model to ex-
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press thesenoises [9]. Specifically, we can obtain the follo-
wing rules by physical observation.

The signals in (1), of which the frequencies are higher
than 200 Hz, come from the noise caused by wheel rotation
and the detection system. They should be completely filte-
red out.

The signals in (2), of which the frequencies are between
60-200 Hz, come from the vibration ofthe detection system
itself. They should be filtered out too.

The signals in (3), of which the frequencies are lower
than 60 Hz, can be divided into two parts. One in linear term
(to beretained) is caused by steady-state load when the ve-
hicles’ wheels are passingthrough thebearing plate. The ot-
herone is the periodic vibrations (known as low-frequency
cycle interference hereinafter), of which the frequency is
about 30 Hz caused by dynamic tire load. Fig.4 shows the re-
lationship of voltage and frequency.
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Fig.4. The relationship of voltage and frequency

Cut-off frequency is the most important parameters
when designingthe low-pass digital filters. The cut-off fre-
quency is the frequency when the signal attenuates to 0.707
time ofthe original. According to the spectralanalysis ofthe
signal, the frequencies ofthe wheelload signals are between
0-60 Hz. Thus, the cut-off frequency is 60 Hz. Performance
indicators of digital filters are provided as follows. The fre-

quency ofpassband boundary is 60 Hz. The attenuation R,

ofpassband is less than 1dB. The frequency of stopband bo-
undary is 100 Hz. The attenuation R ofstopband is greater

than 15dB. Thesampling frequency is 200 Hz. According to
the rules above, we finally designed the Butterworth low-
pass digital filter. Fig.5 shows the Amplitude-frequency cha-
racteristics of Butterworth low-pass filter and fig. 6 shows
the phase-frequency characteristics of Butterworth low-pass
filter.

The transfer function of the filter is shown as follows

H(z)=(1.25%10" +6.26%107z" +1.25%107* 27 +
+1.25%107 27 + 6.26%10° 2 + )
+1.25%107°27°)/(1-4.2827" +7.3627 —

—6.37z° +2.77%z " - 0.48%z7).

After eliminating the high-frequency noise by filtering
out the high-frequencynoise in the weighing signals with the
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Butterworth low-pass digital filter mentioned above, the re-
construction function of the formula (1) is

Y(1) = W + Ay sin(wyt + @p))- 3

Magnitude (dB)
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Frequency (Hz)

Fig.5. Amplitude-frequency characteristics of Butterworth
low-pass filter
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Fig.6. Phase-frequency characteristics of Butterworth
low-pass filter

Himination of the low-frequency random vibration
interference. Nowadays, the main method to eliminate the
low-frequency interference is to employ the digital moving
average filtering, which is to average the dynamic random
vibrations in the range of measurementideally by the digital
average method. In orderto achieve more accurate filtering,
the signalacquisition time must be greater than twice of the
period ofinterference. However, this common method is in-
effective to the periodic interference of low frequency in the
weighing signals. This is because the main factor affecting
the accuracy ofthe vehicles dynamic weighing systemis the
interference from the dynamic load generated by running
vehicles. The weight signals collected by the weighing plat-
form can be seen as signals consisting ofthe static axle load
and the dynamic load. Dynamic load can be seen as compo-
sed ofaplurality of signal, the frequencies of which are ge-
nerally within the 30 Hz, and the amplitudes and the frequen-
cies of which are different. So the dynamic load can be ap-
proximated by the superposition ofa number of trigonomet-
ric functions. According to the accurate mathematics model
of'the formula (1), we can suppose that: if the point on the
scale and the point offthe scale are chosen properly, during
the briefweighing process, the high-frequency noise is eli-
minated, formula (1) can be expressed as

Y(0) = gt + 3. Atsinfia+ ) @)
057 R

where Y (¢) is the ideal low-frequency weighing signal; 4, is
the slope generated by the static load move on the weighing
platform; 4; is the change rate of different frequencies’ am-

plitude ofthe dynamic load with the time; fi is the frequency
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of different frequencies;®; is the initial phase of different

frequencies; n is the number of the different frequency
components contained in the periodic interference genera-
ted by the moving vehicles dynamic load. (Actually, the
signal interference suppressionratio can be greater than 30—
40 dB when , < 3. Because even though there was a high
frequency component, the usual filtering method in prepro-
cessing can effectively inhibit it).

The above modelcan be fitted out according to the de-
tected data. In order to eliminate the noise, it can be used to
obtain the linearterm 4t by the method ofleast squares to

fit out the ideal low-frequency signal. Obviously, this is a
nonlinear fitting problem. At present, there are many opti-
mization algorithms to solve nonlinear least squares prob-
lems. In this research, the Levenberg-Marquardt optimiza-
tion algorithmwas used to solve the nonlinear least squares
problems with the least squares fitting. With the method of
increasing the periodic oscillation items of variable ampli-
tude one by one based on theresiduals, the linear regression
was estimated.

Finally, we got the stationary randomsequence of resid-
uals. In actual fitting, when the number of periodic vibra-
tions is no more than 2, the extracted parts oflow-frequency
and the residuals ofthe fitting modeltend to be smooth data.
Using the inferior check criteria in application, namely

2 2
JEM<CU
2 53

where ,5371 is a variance of model residual before adding

one periodic oscillation item, and §3 is the variance of mo-

del residual after adding one period oscillation item [10].
Afterestimation ofthe parameters of each sub-model, they
can be used as initial values to make entire parameters es-
timation for the whole portfolio model. The nonlinear opti-
mization algorithm was used repeatedly in the estimation
process.

In fitting process, the objective function is taken as

min F(x) = min 'gl fiz (x)= gl [y(t) - Y(t)]z' ®
i= i=

In (5),x:[AO’Al’fi,¢l,,_An,f'n,¢n]T, y(t) is the test data,
and m is the data sampling points.

Levenberg-Marquardt optimization algorithmis shown
as follows:

(1) Give the initial point x¥, the maximum allowed
number of iterations M , and the accuracy ¢ which the re-
sults meet.

(2) Start calculating. Set 4 = 0,4 = 104 to ensure that,lo s

large enough. Calculate the value 0§ x %)) .

(3) Judge vpx®). 1f H , theny® is the ex-

v @) <o

treme point and stopthe iteration. If it does not meet, go to
step (4).
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(4) If the number of iterations & > M, stop the iteration.
Ifnot, go to step (5).
(5) Caleulate ,(0) _ g2 ¢ x(®),, i ™)y and
X*D — ) ),
6) If s xDy_ 1y, goto step (7). If not, go to step
®).
N
3 |y;(0-60)|
(7) Deviation = l:()Ni
1;0 Yi(0)

%100%, In this function,

y; (t) is the reconstructed dynamic weighing signals after a

low-pass denoising,and G(r)is the fitting result data. Then

go to step (4).

(®) 2,y =24k =k+1, then go to step (4).

This optimization algorithm is simple and has the de-
creasing feature, which converges rapidly to the minimum
point and there is no need todo the one-dimensional search.
The actual calculation shows that this algorithm is more ef-
ficient. Let us discuss the calculation process in detail be-
low.

Take the objective function as F(x) = Elff (x), and then
=z

*
n]

solve min F(x) . Get the optimal solution o :[x;‘,,,,,x T of

the undetermined function.
f()
,then f(x) is an m-dimensional vector
Sm ()
function based on x as the independentvariable. Least squa-
res problem could be abbreviated as

min F(x) = min f(X)Tf(x) = mian(x)Hz ©)
of-
in virtue of il ng,-(X) i) s(j=L.un) ;
% ; i=l E)xj
OF (x) U (x) A (x)  ofyy(x)
ox| o oxy ooy [
VF(X) = e S| e || e ™
OF (x) N () oy (x) | Sm ()
Oxp o, oy | oxy
=2 1)
Among them,
of; () .
T =1 O,y 5 = a;j sdi=Lo,mj=1..n

In formula (7), J(x)is used to represent the gradient of
the objective function F(x) in the formofsumofsquares.
Expand f;(x) atthe point x(k) tothe first degreeaccording

to Taylor’s formula

50~ 468y @) 2 By ®)

Obtain the approximate function F(x) based on the
above formula L(k)(x) .
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F =St~ i wr =M. O

Since /¥ (x) is a linear function, ¥ (x) is a quadratic

function.
2 2 (k)
°Fx) oot _m o), (k)
6xl~6xj - 6x16x] ZVE]J” (x )JU (x ) .
There is
V26 2 206N 5By (10)

Bring formulas (7) and (10) into the direction searching
formula in the algorithm optimization process (5), then we
obtain the Levenberg-Marquardt iterative formula

S O T By g (11)

w I £ )y,

Verify the performance of optimization algorithm about
the inhibition ofthe periodic interference, and the simulation
datais generatedby y(z) = s(¢) + n(¢) , where s(z) is the si-
gnal,and n(¢) is thenoise. The specific process is to be ex-
plained as follows.

Signal:

s(t) =20t

Noise:

n(t) = 6tsin(2x * 6t + 37 /2) + 4t sin(27 * 8¢ +0)

Data for simulations:

y(t) = 20t + 6¢ Sin(27 * 61 + 37/ 2) + 4t sin(27 * 8¢ + 0)

Because themodelis complex and during thefitting pro-
cess theinitial value of periodic items parameter will af-fect
the calculation efficiency of the nonlinear least squares
method, before addinga periodic itemeach time, it should be

made a preliminary determination for 4;, £, @; according

to the characteristics of residual data. Treat themas the ini-
tial values, and then do the fitting. The choice of the initial
values determines the amount of calculation and the reliabil-
ity of the results.

(1) Determine the initial frequency. Determine the first
maximum point and the first minimum point of the recon-
structed function after low-pass filtering. Then obtain the
numberofpoints n betweentwo points. Calculate the initial
frequencyy = fol2%n) -

(2) Determine the initial phase. Determine the number of
points 1y between the first data point and the first extreme

point,and the nature ofthe first extreme point, that whether

the first extreme point is the maximum value or the mini-

mum value. When the extreme point is the maximum value,
T n . ..

¢ =— —— r. When the extreme point is a minimum value,
2 n
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Fig.7 shows the simulated signal, fig.8 shows thesignals
afterremoving one periodic interference items, fig.9 shows
the signals after removing two periodic interference items.

SNR ofthe simulated signals is

m
. 2s7(1)
E f the signal b
SNR1 = 101g(——=2 2 TETEM, g1 =L |(ip), (12)
Noise energy > n” (1)
=1

Weight(10**m/Kg)
N
&

s s L . L L ' ' L
0 01 0.2 03 04 05 06 0.7 08 09 1

Time(t/s)

Fig. 7. Simulated signal

25

20

Weight(10°*m/Kg)

0 01 02 03 04 05 06 07 08 09 1
Time(t/s)

Fig. 8. The signals after removing one periodic interfe-
rence items

Weight(10**m/Kg)
2

2 N B o o

0 01 02 03 04 05 06 07 08 09 1

Time(t/s)

Fig. 9. The signals after removing two periodic interfe-
rence items
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Aftereliminating the noise signals by the above method,
s (t)=A4 t can be obtained and now SNR is

Iilsz(t)

i=1

m * 2
EI[S(t) —-s (0]

i

SNR2 = 10lg (dB) . (13)

A large number of simulation calculations were carried
out by adjusting the SNR [9], the frequency of periodic inter-
ference signal, and the phase. Finally, the signalsneed to be
kept the linear term Ay at the end of the fitting process.

Experimental results and analysis. In order to test the
measurement accuracy ofthe vehicle dynamic weighing al-
gorithmproposedin this paper, an experiment was conduc-
ted on the dynamic weighing system. In the experiment, we
used atwo-axle truck vehicle. In the static case, the front ax-
le weight of the truck was 5620 kg, the rear axle weight was
8953 kg, and the whole vehicle weight was 14573 kg Table
shows the test data received in the experiment.

Table
Dynamic Experimental Data and Analysis

NUMBER 1 2 3 4
Speed (km/h) 10 20 30 40
FrontAxleWeight 5527 5530 5694 5513
(kg

FrontAxleError -1.7 -1.6 +1.3 -1.9
(%)

Rear AxleWeight 8799 8825 9112 8798
(kg)

Rear AxleError -1.7 -1.4 +1.8 -1.7
(%)

TotalWeight (kg) 14326 14355 14806 14311
OverallError (%) -1.7 -1.5 +1.6 -1.8
Speed (km/h) 50 60 70 80
FrontAxleWeight 5711 5723 5548 5724
(ko)

FrontAxleError +1.6 +1.8 -1.3 +1.9
(%)

Rear AxleWeight 9080 9097 8821 9111
(kg)

Rear AxleError +1.4 +1.6 -1.5 +1.7
(%)

TotalWeight (kg) 14791 14820 14369 14835
OverallError (%) +1.5 +1.7 -1.4 +1.8

After experimental data analysis, the rate of the overall
weighing error of the dynamic vehicle-weighing algorithm
designed in this project appeared less than 2% when the
speed of vehicles is lower than 80 km/h. The measurement
accuracy reached a higher level.

Conclusions. In our country, although some relevant de-
partments designed and developed a variety of WIM sys-
tems, their performances have not been improved to be
good enough. The reason is that the traditional design meth-
od of static balance has been still used in the design of the
WIM systems. A deep research on the weighing measure-
ment methods and the signals processing methods were not
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carried out. When measuring the weight of the running ve-
hicle, because the weighing signal contains the low-freque-
ncy random interference, and the sampling signal is too
short to get the stable weighing signals, it is necessary to
figure out new weighing measuring and data processing
methods. In this article, we started fromthe analysis of the
dynamic loads of vehicles to solve these problems. We
made deep researches on the design principles of the high-
way dynamic weighing system, the filtering of the high-
frequency signal, the method of inhibiting the periodic ran-
dom interference of short course signal, and so on.

Specific to the dynamic detection characteristics of the
WIM system, the basic design principles of the system was
proposed based on theanalysis on the characteristics of dy-
namic loads of the WIM weighing. The correctness of the
design criteria was proved through the experimental rese-
arch on the dynamic characteristics of the system. This me-
thod may greatly reduce the production and the cost of the
highway system, which is significant to guidethe structural
design of highway dynamic weighing system.

For the same digital filter, the frequencyresponses of the
analog filter corresponding to the different sampling frequ-
encies are different, and vice versa. The high sampling fre-
quency will increase the degree and the amount of cal-
culation ofthe filters with the same performance. In order to
solve this problem and reduce the amount of design work,
that a plurality of filters during frequency division, we de-
signed the Butterworth low-pass filteraccordingto the spec-
trum characteristics of weighing signals in the signal pre-
processing. It is able to eliminate the high-frequency noise
signals and implement the preprocessing of the weighing
signals.

According to theanalyses ofthe dynamic loads of vehi-
cles, during weighing, the dynamic loads act as the low fre-
quency noise interferencein the weighing signals, of which
the initial phases, frequencies, and amplitudes are random.
When raising the speed ofthe vehicle passing the weighing
system, the interference signals contained in the weighing
signals are too short to be inhibited effectively by the nor-
mal filtering methods. In orderto solve this problem, we es-
tablished theideal weighing signal model using the Leven-
berg-Marquardt optimization algorithmin least squares fit-
ting, figured out the optimalsolution, and inhibited the low
frequency periodic randominterference of the short course
signals.
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Meta. Po3poOka cTabiTbHOTO 1 BUCOKOTOYHOTO aJro-
PUTMY AMHAMIYHOTO 3BaYKYBaHHS TPAHCIOPTHUX 32CO01B.

MeTtoauka. CTBOpeHa MOJENb CHCTEMHU IMHAMIYHOTO
3Ba)KyBaHHA TPAHCIOPTHHX 3ac00iB. [IpoananizoBaHi aesKi
BUJM MEPEIIKO, 110 3HIKYIOTh TOUHICTh 3BayKyBaHHsI. 3a-
MIPOTIOHOBAHO HOBUH aNTOPUTM 3BaKyBaHHs B pyci (WIM).
BrCcOKOYACTOTHI MepemnkoaM Oy YCYHEeHi 32 JI0IoMo-
roio nudpoBoro ¢imbTpa HU3BKHUX YacToT baTtTepBopTa, a
MOTIM ONTUMI30BaHI METOJIOM HaMMEHIINX KBaJpaTiB Ha
ocHoBianroput™My JleBenbepra-MapkBapaTa, 0 T03BOJH-
JIO PO3IUIATH TUHAMIYHE HaBaHTAKEHHS Ta 00YHCIIOBATH
CTATUYHY BICh.

PesynbTatn. Y pesyibTaTi 3aCTOCYBaHHS aJTOPUTMY
CHCTEeMH JUHAM YHOTO 3BaKy BaHHS TPAHCIIOPTHHX 3aC001B
1oro cTaOiumbHICTh 1 TOUHICTH OyJia miaTBepmkena. Ha minc-
TaBl aHaJi3y PE3yJbTATIB 3Ba)KyBaHb AJTOPHUTM 3Ba)KyBaH-
Ha B pyci (WIM) OyB cxBaneHui.
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HayxoBa HoBU3HA. ByB po3po0nenui onmumizariitanit
aITOPUTM, IO JO3BOJIIE MiIBUIINTH TOYHICTH BUMIPIOBAH-
HSI Ta CKOPOTHTH 0OM EXKEHHS 110 3BaXKy BaHHIO.

IpakTHyHa 3HAYMMIiCTh. 3aNIPONIOHOBAHUN aITOPUTM
JMHAMIYHOTO 3Ba)KyBaHHs TPAHCIOPTHHX 3aC00IB 103BO-
JUTHb 3a1o0iraTd NEpeBUIICHHIO HOPMAJbHOTO HaBaHTa-
HKEHHS.

KmiouoBi ciaoBa: dunamiune 3sasicysanns, obpobra
OaHux, onmumizayitunui areopumm, bammepsopm, memoo
HAUMEHWUX Kaopamis

Heasn. PazpaboTka cTaOMIIBHOTO U BEICOKOTOYHOTO all-
TOpPUTMA JUHAMHUYECKOTO B3BEIIMBAHUS TPAHCTIOPTHBIX
CPEACTB.

MeToauxa. Co3gaHa MOIeNb CHCTEM bl JMHAM UYECKOTO
B3BEIIMBAHMS TPAHCIOPTHBIX CpeACTB. [Ipoananm3upoBaHbl
HEKOTOPBIE BHUIbI OMEX, CHIXKAIOIIUX TOYHOCTh B3BEIIH-
Banusl. [IpeiokeH HOBBIM alrOpUTM B3BELIMBAHUS B [IBU-
sxernn (WIM). Beicoko4acTOTHBIE TOMEXH OBLIH yCTpaHe-
HBI C TOMOMIBI0 U poBOro GIbTpa HU3KKUX YyacToT baTt-
TEepBOpPTA U 3aT€M OINTHUMHU3UPOBAHBI METOJIOM HAWMEHb-
IUX KBaJPAaTOB Ha OCHOBe ayroputMma JleBenOepra-Ma-
pKBap/ra, 4TO MO3BOJIIO pa3leiisiTh AMHAMUYECKYIO Ha-
TPY3KY U BBIUHCIISTh CTATHYECKYIO OCh.

PesynbTarel. B pesynbrate npuMeHeHUs ajqropurMa
CHUCTEMBl JMHAMHUYECKOTO B3BEHIMBAHUS TPAHCIOPTHBIX
CPEJCTB €ro CTAa0MILHOCTh U TOYHOCTh OBLIM MOATBEPIKIC-
Hbl. Ha ocHOBaHMM aHanmM3a pe3yibTaToB B3BEIIMBAHUH all-
TOPUTM B3BeLIMBaHUs B ABMkeHUN (WIM ) 611 0100peH.

Hayuynasi noBm3Ha. bein pa3paboTaH oNTHMH3aLUOH-
HBIM aJITOPUTM, O3BOJIIOIINI TOBBICUTH TOUYHOCTb U3M€-
PEHUS U COKPATUTh OTPAHUYEHUS 110 B3BEILUBAHHUIO.

IIpakTnueckass 3HaYMMOCTb. [IpemiosxkeHHBIH anro-
PHUTM JMHAM MYE€CKOTO B3BEIITMBAHUS TPAHCIIOPTHBIX CPEJICTB
TO3BOJIMT MPEIOTBPAIIATh IIPEBHIIICHIE HOPMaJbHOW Ha-
TPY3KHU.

KiioueBble cioBa: ounamuueckoe 3geuiusanue, 00-
pabomka OaHHbIX, ONMUMUZAYUOHHBIU aneopumm, bam-
mepeopm, Memoo HAUMEeHbUUX K8AOPATO8

Pexomenoosano 0o nybnixayii O0oxm. mexH. HAYK
JIM. Hlupunum. [Jama Haoxo0ancernns pykonucy 18.06.14.
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