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INFLUENCE OF RELAXATION ON FILTERING MICROFLOWS 
UNDER  HARMONIC ACTION ON THE LAYER

Purpose. Investigation of the velocity fields of non-equilibrium fluid filtration in a layer under harmonic action on it and as­
sessment of the influence of relaxation effects on the attenuation of the amplitude of initial disturbances within the framework of 
mathematical modeling of non-equilibrium plane-radial filtration.

Methodology. A mathematical model of non-equilibrium plane-radial filtration with a generalized dynamic Darcy law in the 
form of a boundary value problem in a half-space with a harmonic excitation law at its boundary is considered. Based on the exact 
solutions of the boundary value problem, the attenuation of the amplitude of initial disturbances under the model’s parameters 
varying and influence of parameters on the size of the disturbed region are investigated.

Findings. A differential equation modeling non-equilibrium filtration processes in the massif in the cylindrical reference frame 
was obtained. Using the method of separation of variables, a solution was constructed, bounded at infinity, to the model differen­
tial equation subjected to harmonic action at the layer boundary. The solution’s asymptotic approximation was constructed for 
large values of the argument. Using the asymptotic solution of the boundary value problem, the damping of velocity field during 
non-equilibrium filtration was analyzed depending on the frequency of the harmonic action, the ratio of the piezoconductivity 
coefficients of the layer, and the relaxation time. Profiles of the dependences of the size of the influence zone on the model param­
eters were plotted and the choice of parameters for optimal influence on the bottom-hole zone of the well was analyzed.

Originality. On the basis of the non-equilibrium filtration model, it is shown that harmonic disturbances applied to the bound­
ary of a semi-infinite layer can penetrate the reservoir over a greater distance under the conditions of manifestation of the relax­
ation mechanism of the fluid-skeleton interaction, compared to the equilibrium filtration process. Such an effect is observed at a 
finite interval of disturbance frequencies, while at high frequencies relaxation contributes to a more significant damping of distur­
bances. In the parametric space of excitation frequency – relaxation time, there is a locus of points that corresponds to the maxi­
mum size of influence zone of disturbances.

Practical value. The obtained results are relevant for research on the impact of wave disturbances on the layer with the aim of 
intensifying filtration processes, as well as for creation of new wave technologies to increase the extraction of mineral resources 
from productive layers.
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Introduction. At the present, the energy stability of Ukraine 
is connected with the increase in the production of energy 
both due to the development of new promising hydrocarbon 
deposits and the use of new technologies for the enhancing 
their production.

Under developing oil and gas fields, the filtration charac­
teristics of the rocks serving as oil and gas collectors deteriorate 
significantly, which leads to a decrease in the flow rate of wells 
and the degree of mineral resources development.

Most of the highly productive fields of the oil and gas com­
plex of Ukraine have entered the final stage of development, 
which is characterized by the progressive depletion of forma­
tion energy, the watering of wells, and the increase in the share 

of hard-to-extract reserves. The development of fields with 
difficult-to-extract oil reserves is carried out at a low rate, and 
the final yield of oil in such cases does not exceed 30–40 % of 
the initial balance of their reserves [1].

In this regard, the most important scientific and technical 
problem that arises during the exploitation of deposits is the 
most complete extraction of oil while ensuring high rates of 
development. Therefore, the tasks of applying new oil produc­
tion technologies that allow one to significantly increase the 
oil yield of the layers being developed and from which it is no 
longer possible to extract significant residual oil reserves using 
traditional methods, are urgent.

To extract these remaining oil reserves, various modern 
methods of intensification of oil production are used, in par­
ticular, thermal, chemical, physical, biological and others. 
Among these methods, physical methods for increasing the 
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flow rate of production wells play a leading role. They also in­
clude methods of wave action on the near wellbore zone 
(NWZ) and on the formation as a whole.

Methods of wave action can be divided into several groups: 
acoustic (ultrasonic, hydraulic), shock wave and vibroseismic 
ones [2].

Knowledge of physical processes and phenomena that are 
responsible for restoring the filtration properties of reservoir 
rocks and fluid mobility is necessary for a well-founded choice 
of the method of wave action on the reservoir and increasing 
its potential oil extraction capabilities. The rate of filtration, 
which is determined using methods of mathematical modeling 
of filtration processes, is used to quantify fluid mobility.

Therefore, the study of the mechanisms of the influence of 
the wave field to restore the filtration properties of the forma­
tion, to solve the problems of increasing oil recovery is an ur­
gent task. The advantages of the methods of wave action on the 
formation are considered to be, firstly, the possibility of adjust­
ing the parameters of the emitter of acoustic waves (intensity, 
frequency, duration of treatment); secondly, ecological purity 
of the method; thirdly, its high efficiency.

Literature review. To study the mechanisms of wave action 
on saturated porous reservoir media and reservoir fluids, as 
well as to identify the peculiarities of the propagation of elastic 
waves in heterogeneous media, many experimental studies 
have been performed. In particular, in works [3, 4], the effect 
of ultrasonic waves on the rheological characteristics of vari­
ous samples of oil and its processing products was experimen­
tally investigated. Experiments proved that the viscosity of all 
liquid samples decreased during the action of ultrasonic dis­
turbances. It was found [3] that a higher power of ultrasound 
leads to a more intense decrease in the viscosity of the liquid.

The results of laboratory studies [4] also showed that the 
mobility of fluids increases under ultrasonic action, while the 
authors of the studies [5], in addition to a decrease in fluid 
viscosity, also observed an increase in reservoir permeability. 
The effect of increasing the absolute permeability of saturated 
porous reservoir media under the influence of high-amplitude 
pressure fluctuations in the liquid was experimentally proven 
in [6].

The research [7] provides experimental studies on model 
heterogeneous media with the aim of confirming the increase in 
oil mobility under ultrasonic action in porous media. According 
to the results of these studies, it was established that the oil ex­
traction coefficient is proportional to the power of the wave 
emitter and depends on the frequency of ultrasonic action.

In order to achieve the maximum efficiency of the wave 
action on the formation and NWZ, it is also advisable to use 
pulse-wave methods with the formation of shock pulses in a 
fluid-filled well, starting from the wellhead, using special de­
vices – pulse generators. In [8], it is proposed to implement 
pulse-wave action using a hydraulic generator with a repetition 
frequency of pressure pulses 1–50 Hz, which are less inten­
sively absorbed by the reservoir at distances exceeding 2  m 
from the well. As a result of the pulse-wave action on the pro­
ductive layer, an optimal level of depression is formed, which 
contributes to the process of oil extraction and purification of 
NWZ. To do this, special pumping equipment is used, which 
allows one to smoothly change the pressure on the wellbore 
over a wide range. As a result, the joint use of a pump and a 
hydraulic pulse generator ensures the minimum content of 
clogging substances and the optimal mode of extracting reser­
voir fluids [8]. For the purification of NWZ from colmatant, 
work [9] proposes a method of shock-wave treatment, which is 
effectively used in the fields of Kazakhstan. The basis of the 
method is the use of a special device that forms rarefaction 
waves. The use of the shock-wave treatment method together 
with chemical compounds showed high efficiency in the pro­
cess of cleaning the near-breakout zone of the formation from 
clogging substances and increasing the acceptability of injec­
tion wells several times (from 20 to 160 m3/day).

In order to study the mechanism of interaction of elastic 
waves with the porous medium of the formation, the effect of 
elastic oscillations on the change in fluid filtration in the bulk 
model for the formation is considered in [10]. The results of 
experimental studies indicate a significant influence of the 
field of elastic oscillations on the filtration of the oil-water 
mixture. In addition, during the experiments, other effects 
were observed: a decrease in the effective friction between the 
rock and the fluid, and as a result, an increase in the mobility 
of the fluid. During the passage of an elastic wave, stretching 
and compression phases are observed, which together with vi­
bration of the skeleton and liquid causes the effect of a vibra­
tion pump; a change in the shape of the meniscus at the 
boundary of the separation of two phases and, as a result, a 
change in capillary pressure [10].

Understanding the wave process patterns occurring in the 
well-reservoir system is incomplete without theoretical re­
search. Such studies are based on the analysis of the equations 
of the continuum mechanics for models of the real medium 
where a wave process is observed.

The authors of [11] developed a mathematical modeling of 
the method of acoustic stimulation of wells. The model takes 
into account the following physical processes: reduction of liq­
uid viscosity due to mixing and heating; excitation of elastic 
waves on the walls of the well (to reduce the adhesion forces 
between formation fluids and rock); excitation of natural fre­
quencies associated with the vibration of the liquid inside the 
porous medium. Using numerical modeling, the optimal ra­
diation frequencies were determined. It is shown that the well’s 
productivity can be significantly improved due to the correct 
selection of operating frequencies of the acoustic emitter.

The paper [12] deals with the problem of pulse-wave influ­
ence on a branched horizontal well, which is modeled by 
branched waveguides of a certain radius, in each of which the 
fluid movement is described by a wave equation. It is shown that 
there are resonant frequencies in branched wells, at which the 
pressure value can exceed the amplitude of the applied pressure 
pulse by several orders of magnitude. It was established that af­
ter pulse-wave treatment of injection wells in the fields of 
Oman, their acceptability increased almost three times.

On the basis of a model differential equation that takes into 
account the oscillation damping, the propagation of ultrasonic 
waves in a viscous liquid was studied in [13] using the integral 
Laplace transform. Mathematical modeling of ultrasonic wave 
propagation made it possible to highlight the mechanisms of 
wave absorption and to study the influence of various param­
eters (temperature, relaxation time) on the propagation of 
waves in viscous liquids. The results of theoretical studies were 
verified experimentally by studying the change in the velocity 
of ultrasound propagation and the damping parameter in glyc­
erol depending on temperature and frequency.

The results of the research on the pulsating steady motions 
of a viscous fluid in the pore channels of the reservoir under 
the harmonic action of acoustic waves on them are presented 
in [14]. To solve the problem, differential equations describing 
the laminar motion of a viscous liquid in a cylindrical pore 
channel were used. On the basis of the obtained solution, nu­
merical calculations of dynamic processes in the pore channels 
of the formation were carried out. It was found that in the case 
of acoustic action on the formation, the speed of fluid move­
ment in pore channels reaches maximum values in a certain 
frequency range, depending on the size of the pores and the 
kinematic viscosity of the fluid.

The article [15] is devoted to the pulsating movements of a 
viscous fluid in the filtration channels of capillary-porous bod­
ies under the action of harmonic waves. Pulsating movements 
are accompanied by compression-discharge waves and sign-
changing filtration flows in the filtration channels of capillary-
porous bodies. According to the results of theoretical studies, 
the most effective mode of pulse-wave loading was selected 
depending on the radius of the pore channel.
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It should be noted that the studies on this topic known in 
the literature were conducted mainly on the basis of the classi­
cal Darcy filtration law without taking relaxation processes 
into account. However, to date, a considerable amount of ex­
perimental evidence of deviations from Darcy’s linear law has 
been collected [16], especially in relation to non-equilibrium 
high-intensity processes, when the strengthening of non-local 
effects is observed [17].

To eliminate this gap, the articles [18, 19] proposed a 
mathematical model for the elastic mode of liquid filtration 
with a generalized dynamic Darcy filtration law, which in­
cludes a description of nonlocal and nonlinear effects. Within 
the framework of this model, the influence of relaxation and 
the ratio of permeability coefficients of the reservoir rock on 
the phase speed of propagation of small wave disturbances was 
analyzed.

Thus, on the basis of the analysis of recent publications 
and research on this problem, it was established that a signifi­
cant part of them is devoted to the elucidation of physical 
mechanisms and phenomena that affect the restoration of the 
filtration characteristics of the porous medium of the reservoir, 
the fluid rheological parameters and the increase of fluid mo­
bility under wave action.

At the same time, the survey of scientific information 
proved that the study of the attenuation of filtration oscilla­
tions, which are formed in the process of acoustic action and 
the study of the influence of relaxation effects on the processes 
of non-equilibrium filtration, are at the initial stage of their 
study and are insufficiently covered. And these factors play a 
significant role in the development of methods of wave action 
on the porous medium of the formation in order to intensify 
the filtration processes in them. In this regard, the purpose of 
the research is to study on the basis of generalized dynamic 
filtration Darcy law the pulsating damping filtration micro­
flows of a fluid in a porous semi-bounded medium of an oil-
bearing formation under harmonic action on it and to deter­
mine the critical frequency of the wave action, which ensures 
the minimum of the reduced attenuation coefficient depend­
ing on the ratio permeability coefficients and the relaxation 
parameter.

The problem statement. The porous medium is considered 
with specified initial porosity m0, pores of which are filled with 
fluid. Let the emitter of acoustic harmonic waves acting on the 
formation be located in the well of the radius rc at the forma­
tion level. Then the fluid, located at a distance r > rc from the 
source of oscillations, perform a one-dimensional axisymmet­
ric radial non-stationary periodic motion according to the law 
determined by the solution of the non-equilibrium filtration 
equations written in cylindrical coordinates
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t r rt rr r

k k
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 
t + ⋅ + + + + = 

μ μ  
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 
ρ + ρ +ρ + = 

 
	r  = r0 + r0b0( p - p0);	 (1)

m = m0 + bs( p - p0);
m( p, T ) = const,  k( p, r) = const,

where u is the filtration velocity, m/s; p, p0 are the variable and 
initial pressures respectively, Pa; r, r0 are the variable and ini­
tial fluid densities, kg/m³; m, m0 are the variable and initial 
rock porosities; b0, bs are coefficients of volume compressibil­
ity of oil and rock skeleton of formation, 1/Pa; m is the coeffi­
cient of dynamical viscosity of oil, Pa ⋅ s; ke, kf are the steady 
and frozen coefficients of permeability, m2; t is the time of re­
laxation, s.

Thus, using the non-equilibrium filtration model (1), we 
consider the problem of the effect of a harmonic disturbance 
applied at the reservoir boundary on the filtration processes in 

it. In particular, the aim of the research is to estimate the size 
of the acoustic influence zone and its dependence on the 
model parameters, especially on the parameters of nonequi­
librity.

Description of the research methodology. System (1) is a 
generalization of classical equations of filtration theory. In 
particular, using the relaxation formalism [18, 19], the classi­
cal Darcy law is supplemented with a description of the non-
equilibrity of filtration flows.

Since the system of equations (1) is significantly nonlinear, 
its analytical solutions are not known. However, for small de­
viations from the equilibrium state (u, r, p) = (0, r0, p0), occur­
ring under acoustic wave action on the layer, filtration pro­
cesses with relaxation in the first approximation with respect 
to small disturbances can be described using the following 
linearized equations
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k k uu p u p p u
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where b = m0b0 + bs.
Differentiating the first equation of system (2) with respect 

to time and excluding the variable p from it with the help of the 
second equation, we obtain from system (2) a model equation 
describing non-equilibrium filtration processes of a fluid dur­
ing planar radial motion
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e

k
K =

bμ
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f

k
K =

bμ
 m/s2 are the coefficients of 

piezoconductivity of formation in equilibrium and frozen 
states respectively.

Next, equation (3) subjected to boundary conditions is 
solved by the method of separation of variables, which allows 
one to reduce it to a boundary value problem for the Bessel 
equation with respect to the spatial component. The obtained 
boundary value problem possesses an analytical solution; 
however, for large argument values, it is appropriate to use so­
lution’s asymptotic representation. Using the asymptotic solu­
tion, in the research, the acoustic influence zone, which is 
determined by the solution of the transcendental equation, is 
evaluated. Using the methods of mathematical analysis, the 
existence of a unique root to the algebraic equation is proven 
and a convergent algorithm is built for root calculation by the 
method of simple iteration. Numerical calculations were car­
ried out using the Mathematica package.

Presentation of research results and discussion. To study 
the effects of wave harmonic action on filtration in the porous 
medium of an oil-bearing reservoir, it is necessary to deter­
mine the solution of equation (3) with the following boundary 
condition
	 u(r, t) = A sin wt  at  r = rc.	 (4)

The constraint providing boundedness of equation’s solu­
tion at infinity reads as follows

lim ( , ) 0.
r

u r t
→∞

=

It is convenient to look for the solution of the boundary 
value problem in the class of complex-valued functions (with 
the appropriate modification of the boundary condition) by 
the Fourier method (method of separation of variables) in the 
form

	 ( , ) ( ) ,i tu r t R r e w= ⋅ 	 (5)

where w is the circular frequency, s-1.
Inserting (5) into equation (3), we obtain the Bessel equa­

tion with complex argument
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where 2

K 1e

ia
i

 w - wt
=  + wtq 

 and q = Kf/Ke.

In general, the parameter q can be regarded as a measure 
of how far relaxation can take the system from the equilibrium 
state or how much the systems can differ in the equilibrium 
and frozen states. Let us recall that q < 1 according to thermo-
dynamic constraints (A. V. Kosterin, 1980).

Thus, the solution of equation (6) with modified boundary 
condition R(r) = A at r = rc and condition at infinity R(r) → 0 
has the form

	 1

1

K ( )( ) ,
K ( )c

ra
R r A

r a
= 	 (7)

where K1(⋅) is the modified Bessel function of the second kind 
of the first order.

The number a in (7) is defined by the well-known relation 
a = j + ia,where [19]
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and z = wt is the dimensionless frequency.
From relations (8) and (9) it follows in particular that in 

limiting cases when z → 0 the quantity 2 ,e eKj → j = w  
2e eKa → a = w  and when z → ∞, the quantity j → jf =  

2 ,fK= w  2 .f fKa → a = w

Hence, taking into account (7), we arrive to the following 
expression for solution (5)

	 1

1
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 Κ j + a =
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which satisfies the boundary conditions and allows one to 
identify corresponding solution of the problem (3–4) in the 
real domain

( , ) Im ( , ).u r t u r t= �

For further studies, assessing the influence zone of pulsa-
tions of filtration microflows on colmatant region, we need an 
asymptotics of modified Bessel function K1(s) for its argument 
greater than one

	 1( ) .
2

ss e
s

-π
Κ ≈ 	 (11)

Substituting (11) into expression (10), we lead to the fol-
lowing relation

	 ( )( )( , ) .cr r ic i tr
u r t A e e

r
- - j+ aw=� 	 (12)

Then, evaluating the imaginary part of (12), we obtain the 
real-valued solution at large argument of the Bessel function 
K1(s) for nonequilibrium filtration

	 ( )( , ) sin ( ) .cr rc
c

r
u r t A t r r e

r
- - j = w - - a  	 (13)

Such solutions describe a pulsating standing damping 
wave, under the influence of which oscillating pulsating mi-
croflows are formed, which help to increase the permeability 
of the formation, washing out the pore channels [5, 6].

It is worth noting that similar pulsating fluid oscillations 
were observed during experimental studies [10] and in theo-

retical investigations of the movement of a viscous fluid in the 
medium’s pores under the influence of harmonic wave action 
[14, 15].

The size of zone of influence of wave fields is not large due 
to their significant attenuation, but such a size is sufficient to 
affect colmatant area of the NWZ, where the filtration fluid 
flow is most significantly suppressed. Therefore, an important 
objective is to estimate the attenuation of filtering pulsating 
oscillations in NWZ in a wide range of frequencies, depending 
on the parameter q and parameter t.

Next, based on the theoretical studies outlined above, let 
us estimate the NWZ size, which is under the influence of the 
wave action caused by the operation of the acoustic emitter 
mounted directly in a well.

As an estimate of the size of this area, we choose the dis-
tance rV, at which the attenuation of the initial disturbance 
reaches a predetermined value. In other words, attenuation (or 
the size of the influence zone) is conveniently characterized by 
the following quantity

max ( , ).
max ( , )

t V

t c

u t r
u t r

D =

Taking into account solution (12), we get   D =
( )V cr r

c Vr r e- - j=  or in relative units V V cr r r=

	 ( 1)1 .V cr r

V

e
r

- - jD = 	 (14)

If we fix the value of D, then the derived expression can be 
regarded as an algebraic equation with respect to the parame-
ter Vr . It is convenient to rewrite equation (14) in the follow-
ing form

	 F(y) = ln y + 2yrcj - 2 ln M,	 (15)

where 0,Vy r= >  1 .crM e j-= D

Since 
1 2 0,cry y

∂F
= + j >

∂
 then the function F is mono-

tonically increasing. Let us show that it can take values of dif-
ferent signs. To do this, we derive

F(M2) = 2M2rcj > 0.

Next, let us estimate the value of the function at the point 
F(M-k), where the exponent k > 0 is chosen from the condition 
that F(M-k) < 0.

Hence, let M > 1, then

F(M-k) = -k ln M + 2M-krcj - 2 ln M.

Choose k in such a way that the term 2M-krcj = e is such 

that e - 2  ln M < 0. Then 
ln2 0,

ln
crk
M
j e

= >  and also 0 < e < 

< ln M2. Therefore, taking 0 < e < min{2rcj, ln M2}, we evaluate 
k and, moreover, it is valid F(M-k) < 0.

Thus, the function F is the continuous at the interval 
y ∈ (0; ∞) and admits the values of different signs on the inter-
val [M-k; M2]. Then by the Intermediate Value Theorem, this 
function possesses a root on the specified interval; moreover, 
due to monotonic increasing this root is unique.

This root can be evaluated by the simple iteration method. 
To apply this method, equation (15) can be rearrange, for in-
stance, in the form

	
2ln ln ( ),

2 c

M yy y
r

-
= ≡ y

φ
	 (16)

for which the iteration scheme is as follows yn + 1 = y(yn). Let us 
note that for a simple iteration, a sufficient condition for con-
vergence is the constraint
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M2] the derivative 
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2

k

c

d M
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j ε

In other words, taking into account the constraints for e 
mentioned above, the process of simple iteration is convergent 
for arbitrary initial data if it is possible to choose e such that 
1 < e < min{2rcj, lnM2}.

It is worth noting that at low frequencies it is possible to 
occur the case when min{2rcj, ln M2} < 1 and then application 
of algorithm is impossible.

But the condition e > 1 can be eliminated if we choose an­
other form of representation (16). In particular, let us multiply 
equation (15) by a number (-l) (here l is positive), add y to 
both parts and finally obtain

y - l(ln y + 2yrcj - ln M) = y.

The quantity l is chosen from the condition that

( (ln 2 ln )) 11 2 1.c
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d y y yr M
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 is valid for all 

positive l. Another part of inequality
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Thus, the iteration process

	 1
2 (ln 2 ln )

2n n n n ck
c

y y y y r M
M r+ = - + j-

+ j
	 (17)

is convergent for arbitrary initial data without auxiliary con­
straints for e.

Similar studies can be performed also for the case M < 1.
To show the algorithm’s work, let us fix the parameter val­

ues w = 100 s-1, t = 0.03 s, q = 0.05, Ke = 2 m/s2, rc = 0.1 m and 
D = 0.1.

Then the quantity M = 13.385 > 1. Since min{2rcj, ln M2} = 
= min{0.583, 5.188} = 0.583 < 1, we can choose e for instance 
as e = 0.5 and apply algorithm (17). The process of algorithm 
convergence is shown in Fig. 1 for different initial data. Analy­
sis of Fig.  1 indicates that the algorithm is convergent for a 
wide range of initial data (as it should be in accordance with 
the fulfillment of the sufficient convergence condition) with 
quite good rate of convergence (in fact, the third iteration pro­
vides the root).

Using the results obtained above, the relative influence ra­
dii Vr  are calculated for different values of perturbation fre­
quency w, time of relaxations t and the parameter q when 
other parameters are fixed: rc = 0.1 m, Ke = 2 m2/s and the pa­
rameter D = 0.1.

Thus, Fig. 2 represents the solutions of equation (14) as a 
function ( ; , )Vr w t q  of frequency w, when t and q take discrete 
values, e. g. t = 0 (absence of relaxing effects), t = 0.01, t = 0.03, 
while q = 0.05 and q = 0.1 (dashed curves).

The behavior of graphs at the edge points of domain of the 
function is quite interesting. When w → 0 (t is fixed), the 
curves Vr  approach the point 2(0) .Vr

-= D  When w → ∞, then 
equation (14) reduces to the form

1 exp((1 ) ),V V cr r r-= D - j

in which j → jf → ∞ at w → ∞. In this case the equation pos­
sesses the bounded solution if 1.Vr →  Thus, we encounter the 
0 ⋅ ∞ uncertainty, which can lead us to bounded result. There­
fore, if solution (14) exists at w → ∞, then this can be realized 
at 1Vr =  only, that is confirmed by the asymptotics of the 
graphs in Fig. 2. Hence, we can state that all curves ( )Vr w  pos­
sess two common points: w = 0 and w = ∞.

No less interesting is the behavior of the graphs at varying 
t. Near w = 0 for each curve ( )Vr w  there exists the interval (its 
size decreases when t grows), on which the curve is close to 
equilibrium curve ( ; 0).Vr w t =  This indicates the weak influ­
ence of relaxation on the system’s dynamics at low frequen­
cies. Moreover, the amplitude of initial perturbation attenu­
ates slowly such that its 10-fold decrease is observed at dis­
tances of 6–8 well radii rc. However, for higher w the values 

( )Vr w  attenuates quickly and for w > 200 s-1 the radius of influ­
ence zone is about 3rc, i. e., high-frequency disturbances do 
not penetrate far into the formation, which is consistent with 
classical results.

As w increases, relaxation plays a more prominent role, 
i. e. the more t, the more .Vr  However, due to the faster de­
cline of the function ,Vr  the intersection points of the curves 

Fig. 1. Iteration process for finding the solution of equation (14) 
by means of algorithm (17) at fixed parameter values:
w = 100 s-1; t = 0.03 s; q = 0.05; Ke = 2 m/s2 and rc = 0.1 m. Dashed 
line corresponds to the root value evaluated numerically by the 
tools in-built in Mathematica package

Fig. 2. The dependence of   Vr  on the frequency w at fixed t and 
q. The other parameters are:
Ke = 2 m/s2; rc = 0.1 m
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corresponding to different t appear. This means that only in a 
limited range of frequencies relaxation effects contribute to the 
growth of the influence zone, that is, the size of .Vr  For fre­
quencies beyond this interval, relaxation behaves as an addi­
tional mechanism for dissipating the energy of oscillatory mo­
tion. As can be seen for the curve ( ; 0.03),Vr w t = , at high fre­
quencies the amplitude of the initial disturbance decreases by 
a factor of 10 already at distances of the order of 2rc, which is 
less than for relaxation processes with shorter t and under 
equilibrium conditions.

Fig. 3 exhibits the graphs of dependence ( ; , )Vr t w q  on the 
time of relaxation t at fixed w = 50 and w = 150 s-1 (solid curves) 
when q = 0.05.

In contrast to the graphs in Fig. 2, in intervals of small t, 
the curves ( )Vr t  in Fig. 3 have local maxima on their profiles. 
To calculate their coordinates, we use the necessary extremum 
condition, applying it to equation (14) as an implicitly defined 
function. If we assume that ( )Vr y y= = t  and also according to 
(8) j = j(t), then the derivative is as follows

(1 )1 2
2 .

1 2
cy r

c
c

ye ydy dr
d yr d

- j-D - j
= ⋅

t + j t

It is obvious that at the critical point t = tcr we get 0,dy
d

=
t

 

when 0.d
d
j
=

t
 From the last equation it follows the condition 

of existence of the local extreme value [19]

	
2

2
3(1 ) 9 14 9 .

2cr
+q - + q+ q

wt =
q

	 (18)

Using expression (18), it is easy to show that at increasing 
q the critical point shifts to the left.

If q increases to 0.1, we get graphs Vr  marked with dashed 
lines (Fig. 3). Note that the curves corresponding to different 
q, intersect (compare the solid and dashed curves).

This means that increasing q affects differently Vr  the 
whole interval t. In the most interesting interval t, growth q 
causes suppression of the maximum Vr  and its shift to small 
values of t.

The mutual influence of frequency and relaxation time is 
clearly visible on the contour plot in Fig. 4. The solid curve 
marks the locus of local maxima, which are determined by 
condition (18) at q = 0.05.

Thus, the selection of frequency w for NWZ processing 
should be carried out in such a way as to stay close to the local 
maxima of the graph ( ); ,Vr t w q . This, in turn, requires more 
detailed information about the reservoir and its saturating fluid.

Conclusions and prospects for further research. In the con­
ducted research, using the generalized dynamic Darcy law 
with one relaxation parameter, a mathematical model of the 
elastic regime of non-stationary non-equilibrium fluid filtra­
tion in a porous semi-bounded medium of a circular forma­
tion is considered.

The research deals with the boundary value problem of 
non-equilibrium filtering with harmonic perturbation at the 
boundary of a semi-confined reservoir and the additional con­
dition that the solution is bounded at infinity. By the method 
of separation of variables, a non-stationary complex-valued 
solution is obtained in the form of a product of a harmonic 
function of time and a modified Bessel function of the second 
kind of the first order with respect to the spatial coordinate. 
Based on this solution, an asymptotic solution of the problem 
for large values of the argument of the Bessel function is con­
structed. This solution determines the pulsating fluid motion 
in a porous formation.

Using the derived solution, the damping of pulsations dur­
ing non-equilibrium filtering is analyzed depending on the fre­
quency of the wave action, the ratio of the piezoconductivity 
coefficients Kf /Ke, and relaxation parameter.

Graphs of the dependences of the size of the influence 
zone on the model parameters are plotted and the choice of 
parameters for optimal influence on the NWZ is analyzed. It is 
established that the sizes of the zones affected by vibration 
during non-equilibrium filtration exceed the sizes of these 
zones during equilibrium filtration processes.

A mathematical model of non-equilibrium fluid filtration 
is proposed, and the results of theoretical studies are obtained, 
which are relevant for the development of wave technologies 
for the intensification of mineral resource extraction [21].

In the future, studies of non-equilibrium filtration in the 
case of a larger number of relaxation processes, as well as in the 
case of the dependence of formation permeability coefficients 
on the spatial coordinate, are of scientific and practical interest.
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Fig. 3. The dependence Vr  on time of relaxation t at fixed w 
and q. The parameters are as follows:
Ke = 2 m/s2; rc = 0.1 m

Fig. 4. Contour plot for the function Vr of w and t. The graph of 
function (18) is depicted by solid curve:
q = 0.05; Ke = 2 m/s2; rc = 0.1 m
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Вплив релаксації на фільтраційні мікротечії 
за гармонічної дії на пласт
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Мета. Дослідження полів швидкостей нерівноважної 
фільтрації флюїду у пласті за гармонічної дії на нього та 
оцінка впливу релаксаційних ефектів на загасання амплі­
туди початкового збурення в рамках математичного мо­
делювання нерівноважної плоскорадіальної фільтрації.

Методика. Розглядається математична модель нерів­
новажної плоскорадіальної фільтрації з узагальненим ди­
намічним законом Дарсі у формі крайової задачі у напів­
просторі з гармонічним законом збудження на його межі. 
На основі точних розв’язків крайової задачі досліджуєть­
ся згасання амплітуди початкового збурення від параме­
трів моделі та їх вплив на розміри збуреної області.

Результати. Отримане диференціальне рівняння, що 
моделює в циліндричній системі координат нерівноваж­
ні фільтраційні процеси в масиві пласта. Використовую­
чи метод розділення змінних, знайдено розв’язок мо­
дельного диференційного рівняння з гармонічною дією 
на межі пласта та обмеженістю розв’язку на нескінчен­
ності. Побудоване асимптотичне наближення розв’язку 
для великих значень аргументу. Використовуючи асимп­
тотичний розв’язок крайової задачі, проаналізоване зга­
сання пульсацій полів швидкостей при нерівноважній 
фільтрації в залежності від частоти гармонічної дії, спів­
відношення коефіцієнтів п’єзопровідності пласта й часу 
релаксації. Побудовані графіки залежностей розміру 
зони впливу від параметрів моделі та проаналізовано ви­
бір параметрів для оптимального впливу на призабійну 
зону свердловини.

Наукова новизна. На основі моделі нерівноважної філь­
трації показано, що гармонічні збурення, прикладені на 
межі напівнескінченного пласта, можуть проникати у пласт 
на більшу відстань в умовах прояву релаксаційного механіз­
му взаємодії флюїду та скелета, порівняно з рівноважним 
фільтраційним процесом. Такий ефект спостерігається на 
скінченному інтервалі частот збурення, тоді як на великих 
частотах релаксація сприяє більш суттєвому затуханню збу­
рень. У просторі параметрів «частота навантаження – час» 
релаксації існує геометричне місце точок, що відповідають 
максимальним розмірам зони впливу збурення.

Практична значимість. Отримані результати є акту­
альними для досліджень щодо впливу хвильових збурень 
на пласт з метою інтенсифікації фільтраційних процесів, 
а також для створення нових хвильових технологій під­
вищення вилучення мінеральних ресурсів із продуктив­
них пластів.

Ключові слова: нерівноважна фільтрація, узагальнений 
закон Дарсі, пористе середовище, хвильова дія, загасання, 
фільтраційні поля швидкостей
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