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MATHEMATICAL MODELS FOR DETERMINING AND ANALYZING THERMAL
REGIMES IN MINING INDUSTRY MECHANISM STRUCTURES

Purpose. To develop linear and nonlinear mathematical models of heat conduction for isotropic heterogencous media with
internal heating. This will allow for an increased accuracy in determining temperature fields, which will subsequently impact the
effectiveness of designing mechanisms, devices, and individual components of structures that have a layered structure and are
subjected to heat stress.

Methodology. For the development of linear and nonlinear mathematical models of the temperature field and the analysis of
temperature regimes in layered media with internal thermal heating, the coefficient of thermal conductivity is described as a whole
using asymmetric unit functions. This makes it possible to solve a differential equation with singular coefficients in both linear and
nonlinear boundary value problems of heat conduction with appropriate boundary conditions.

Findings. Quadratic equations are obtained to determine the analytical solutions of linear and nonlinear boundary problems of
heat conduction for a layered plate with internal heat load.

Originality. The scientific novelty lies in the given method of linearization of the nonlinear mathematical model of heat con-
duction and obtaining analytical solutions, in a closed form, of the corresponding linear and nonlinear boundary value problems
for isotropic layered media subjected to internal heating.

Practical value. The developed linear and nonlinear mathematical models for determining the temperature distribution in
layered structures with internal heating make it possible to analyze heat exchange processes and ensure the thermal stability of such
structures. This also makes it possible to increase the heat resistance of structures and protect them from overheating, which can
lead to damage to individual components and elements of mechanisms, as well as to the entire structure as a whole. The resulting
analytical solutions can be used to predict temperature fields in mine shafts, underground environments and mechanisms of min-
ing equipment, in particular, in drilling and underground compressor stations, ventilation systems and other equipment, which
improves work efficiency and reduces useful energy consumption.

Keywords: temperature field, thermal conductivity, thermal stability, linearizing function, layered structure, singular coefficients

Introduction. In mechanical engineering, in particular, for
mechanisms of the mining industry, separate nodes of struc-
tures and their elements in the form of layered structures that
are exposed to temperature effects are widely used. The design
and development of such mechanisms, where individual ele-
ments and nodes have a piecewise homogeneous structure and
often operate under conditions of constant heating or cooling,
involves not only expanding their capabilities and improving
their performance, but also ensuring stable operation, high re-
liability, and thermal stability. Increasing the capacity of such
mechanisms and their integration into the system significantly
complicates the problem of thermal resistance to thermal
loads of their structures, which partially or completely fail due
to thermal overloads.

Since, as noted above, the above-mentioned structures op-
erate in a wide range of temperatures, their high operating pa-
rameters necessitate consideration and solution of nonlinear
boundary value problems due to the dependence of the thermal
and physical parameters of structural materials on temperature
and heat transfer conditions on the temperature of their sur-
faces, since calculations of temperature fields based on linear
mathematical models of heat conduction processes do not al-
ways give satisfactory results. Therefore, in order to develop the
most adequate mathematical models for the real process, it is
necessary to take into account the dependence of thermophys-
ical parameters on temperature, density of surface flows and
intensity of internal heat sources, changes in the shape of the
medium, and possible phase and structural transformations.

Literature review. Determination of temperature regimes
in both homogeneous and heterogeneous structures attracts
the attention of many researchers. Temperature plays an im-
portant role in determining the physical and chemical charac-
teristics of materials. This effect becomes especially significant

© Havrysh V., Kolyasa L., Serdiuk P., 2023

when there are significant temperature fluctuations, as ob-
served in heat conduction processes. Temperature changes
lead to certain changes in material properties, which makes it
difficult to determine the temperature distribution and ther-
mal stress. As a result, determining the thermoelastic state of
structures becomes much more difficult.

In [1], the thermoelastic problem of an elliptical cavity in
an infinite medium was investigated using the generalized
complex variable method. As a result of the analysis of the
thermoelastic state of the medium, the temperature depen-
dence of the coefficient of thermal conductivity, modulus of
elasticity and coefficient of thermal expansion is taken into ac-
count. Taking into account these dependencies, analytical ex-
pressions for temperature, heat flux, and thermoelastic fields
were obtained.

Analytical solutions of the distribution of temperature,
displacements and stresses in layered rectangular plates with a
simple support, which are subjected to thermomechanical
loads, are presented. The material properties of the layers de-
pend on the temperature [2].

The thermoelastic parameters of functionally graded po-
rous plates with different material distributions were investi-
gated and it was found that thermal stresses are more sensitive
to material distribution than temperature and deformations [3].

In paper [4], research is aimed at determining the effect of
the temperature dependence of material properties and indi-
cators of the composite gradient in functionally graded rectan-
gular plates on temperature, deformation, and stress.

The solution for the steady-state reaction of thick cylinders
subjected to pressure and external heat flow on the inner sur-
face is presented [5].

The thermal analysis of cylinders of different thicknesses
made of functionally graded materials under the influence of
heterogeneous heat flows concentrated on the inner and outer
layers was performed [6, 7].
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The work [8] is dedicated to the determination of the solu-
tion of the non-stationary problem of thermal conductivity
and thermoelasticity for functional gradient thick spheres.
Thermophysical and thermoelastic parameters of materials,
with the exception of Poisson’s coeflicient, are arbitrary func-
tions of the radial coordinate. The axisymmetric stationary
problem of thermal conductivity and thermoelasticity for hol-
low functional gradient areas relative to the heat source is con-
sidered.

Thermal modeling of electronic devices is one of the most
important tools for assessing their reliability in various operat-
ing modes. In [9], a thermal model of electronic devices is pre-
sented, which is based on experimental temperature measure-
ment data obtained by an infrared camera. These data are in-
put for the developed mathematical model, which is based on
the method of finite differences and some known physical de-
pendencies. The developed model was verified by comparing
the simulation data with the experimentally obtained ones. It
can be used to study the thermal behavior of the device under
various operating conditions.

In most portable electronic devices, in addition to the tem-
perature of multiple heat sources, i.e., the connection tem-
perature, the body temperature, i.e., the skin temperature,
should also be monitored to protect the user’ s work. Thus, the
creation of a compact device-level thermal model for predict-
ing skin temperature will not only improve the efficiency of
thermal design at an early stage, but also help develop a mod-
el-based temperature control strategy. In the paper [10], dy-
namic compact thermal models of two portable electronic
devices, including a smartphone and a laptop, were first cre-
ated based on the convolution method. Under the assumption
of linear time-invariant systems, the skin temperature of the
two test devices can be quickly calculated after obtaining the
step response of each heat source.

The increase in specific power of electronic devices, due to
higher performance and miniaturization requirements, has
prompted researchers to search for new and alternative meth-
ods of temperature control. Since most electronic devices are
often subjected to high-frequency power cycles, cooling sys-
tems must also be able to manage transient thermal profiles to
delay the temperature response and reduce temperature gradi-
ents within the device that can lead to thermal stress and, in
the long run, electronic device failure. The integration of
phase change materials (PCM) into heatsinks for electronic
devices represents an interesting technical system to increase
the thermal inertia of the cooling system while providing a
more stable operating temperature in the electronic compo-
nents. Article [11] discusses the latest research trends in this
area, with a special focus on electric batteries, power electron-
ics, and the use of portable devices.

Much of the effort in electronics temperature management
has been focused on developing cooling solutions that provide
steady-state operation. However, electronic devices are in-
creasingly used in applications involving time-varying work-
loads. These include microprocessors (including those used in
portable devices), power electronic devices, and arrays of pow-
erful semiconductor laser diodes. Transient solutions for tem-
perature management are becoming essential to ensure the
performance and reliability of such devices. New requirements
for temperature control in transient processes are defined in
[12], and cooling solutions described in the literature for such
applications are presented, focused on the time scales of the
thermal response.

Existing methods have been improved and new approach-
es have been developed to create mathematical models that al-
low analyzing heat exchange in piecewise homogeneous me-
dia. Flat and spatial models of heat transfer are presented, in
which the differential equations contain coefficients that de-
pend on the thermophysical properties of the phases and the
geometric structure. Approaches for determining analytical
and analytical-numerical solutions of boundary value prob-

lems of heat conduction are presented. Heat exchange pro-
cesses occurring in homogeneous and layered structures with
inclusions of canonical form were analyzed [13].

Problem formulations. 1. Uneven heating is one of the fac-
tors that cause deformations and stresses in elastic media. If
nothing prevents its expansion as the temperature rises, then
this medium is deformed and no stresses arise. However, if the
temperature rises unevenly there and the environment is not
homogeneous, temperature stresses are formed as a result of
expansion. Let us remind you that the stress-strain state is a set
of internal stresses and deformations of the structure or its ele-
ments that occur as a result of external loads, temperature
fields, or other factors acting on it. The so-called thermo-
stressed deformation state of structurally heterogeneous media
is determined by calculation and experimental methods in the
form of the distribution of stresses, deformations and move-
ments in the structure, which is important for assessing the
static strength and resource of structures at all stages of their
life cycle. If we do not take into account the temperature dis-
tribution of the influence of stresses and deformations caused
by force factors inherent in most practical problems, then the
first and independent step for the study on temperature stress-
es is the determination of temperature fields, which is the main
task of the analytical theory of heat conduction. In some cases,
the determination of temperature fields is an independent
technical problem, the solution of which makes it possible to
determine temperature stresses. In this regard, we will present
a method for determining the temperature distribution by spa-
tial coordinate for a thermally active layered medium, which is
in conditions of thermal stress due to concentrated, uniformly
distributed heat sources with a certain density on the entire
surface of the structure. This structure consists of # heteroge-

neous layers, on the contact surfaces y; (i=1,n—1) of which

the conditions of equality of temperatures ¢, = #,,; and heat
ot ot;
flows k,a—’zkm k2l
are set, and the boundary surfaces of the medium are main-
tained by a certain constant temperature 7, (Fig. 1).
We describe the thermophysical parameters for an isotro-
pic piecewise homogeneous medium in the form of a function
on the spatial coordinate

(conditions of ideal thermal contact)

n—1
PO)=p+ 0 (P —P)S, (¥ =), (1)
i=1

where p;(i=1,n) is the thermophysical parameter of the i"
layer of the medium.

The relation (1) and the conditions of ideal thermal con-
tact make it possible to write down one differential equation of
thermal conductivity to determine the temperature field #(y) in
a piecewise homogeneous structure

div[A(y) grad 1(y)] = —q, ()
with a boundary condition on the boundary surfaces
10)=1(/) =1, 3)

where 7, is the temperature value given on the boundary sur-
face; A(y) is the coefficient of thermal conductivity of a piece-
homogeneous structure, described by the expression (1); /isa
thickness of a piece-homogeneous structure; g, = const is the
power of uniformly concentrated internal heat sources.

Let us enter the function

T(y) = v 1), 4

and we differentiate it by the variable y, taking into account the
expression (3) for the thermal conductivity coefficient A(y). As
a result, we get the ratio

dt dT =
AY) ===y =AY, (¥ - ),
(y)dy e M( w1~ AHY)S, (Y= y;)
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Fig. 1. Isotropic piecewise homogeneous structure

considering which we will rewrite the original equation (2) in
the form
dZT n-1

?720"”1 7>\i)t(yi)61+(y7yi) =—qp.
Ve =

I, >0 ds.(©)
S (€)= , O =—=
Here S,(C) 0, £<0 () dC
ric Dirac delta function; S, () is the asymmetric unit function
[13].
The general solution of this equation is

is the asymmet-

n-1

T(9) =2 Oy =2 HD)S, (v = y,)—fy tay+e. (5)

i=1

Let us determine the values of #(y;)(i=1,n—1), using the

relations (4, 5)

1 q
t()’])—}\‘l(qyl +6 _70)’12 ;

Taking into account the boundary condition (3) and the
relation (5), we find the integration constants ¢, and ¢,

XE ! ! +
4, A, 7» yl y,,
2 n-1 1 1
by -
Z(x y jy, Y

As a result, the temperature field in a layered plate with
uniformly distributed internal heat sources is determined by
expression (5).

For mining industry mechanisms, tasks that consider the
process of heating or cooling of various systems with internal
heat sources concentrated in the area of a particular node or its
element are important. The reliability of the operation of
parts, assemblies, component structures, and in some cases
the entire structure cannot be guaranteed without observing
the proper thermal condition. Thermal and temperature con-
ditions limit the operational characteristics of the equipment,
affect the choice of structural materials, impair the dynamic
capabilities of the device as an object of regulation and con-
trol, determine technical and economic indicators, dimen-
sional and weight parameters, etc. For this, there are clearly
defined requirements for the operating modes of such struc-
tures, primarily optimal, transitional and basic thermal condi-
tions for their operation. In this regard, we will consider the
case when the internal heat sources are concentrated on the

¢ = ;G =M.

surface of one of the layers of a piece-homogeneous medium.
Then the thermal conductivity equation (2) will take the fol-
lowing form

div[I(y) grad/(y)] = =qoN(y, »)), (6)

where
NG, ) =8.C-G-)—S(E-E).

Let us determine the general solution of equation (6) in the
form

T(y)= 2(7»[” A (Y =y) =g F(W)+ey+e,. (7)
Here
F(y)=0.50’N(, y) + () = H();
Fi(y) :yj—l(o-syj—l -8y =Yi1);
E(3) =y/0.5y;,= ) 8.0y = »).
Using ratios (4, 7), we determine the values #(y;) (i=1,n—1)

(temperature values at the interface surfaces y = y; of dissimilar
layers of the medium)

9 F(y) yz}

1
t(y1)=7T R

1

U=V 1 y. | ¢
)=l Q| ———— |y, +L |+~
‘{;[x xﬁlj i x,} A
W F)| & 1 v
"2 [Z P A
Jj=1 J J+l i

We obtain the constants of integration ¢, and ¢, using
boundary condition (3) and relation (7)

n-1 1 1
79y JESL I [F= I
"2(7“ 7“i+1 S

¢, =0.5¢,F(y) ’;: 1’ "
A Z[k_kjy’ A
2. Consider an isotropic thermosensitive layered struc-

ture. Due to the thermal sensitivity of the materials of the
medium, the conditions of ideal thermal contact at the junc-

;=M.

tion of the layers y;(i=1,n-1) will be rewritten as ;= 1,,,,

A; (t) =X, (0) A/ (Fig. 1). In the given structure, it is nec-
oy

essary to determine the temperature distribution #(y) along the
spatial coordinate y, which will be obtained by solving the
nonlinear heat conduction equation

d dt
dy{?»(y,t)dy} ==q ®)

with the boundary condition (3), where
n—1
}“(yvt):x[(’)JrZO‘,‘H(I)*}WU))SJr(y7y,‘) (9)
il

is the thermal conductivity coefficient of the thermosensitive

layered system; A;(i=1,n) is the thermal conductivity of the i
layer of the structure.
Let us introduce a linearizing function

1(y) 1(y)
9<y>—j x(@)dc+zs =) | D @-2,OWE. (10)
1)

We differentiate the expression (10) by the variable y taking
into account the relation (9), as a result of which we obtain

=2
oy
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Based on this, the original nonlinear thermal conductivity
equation (8) is reduced to an ordinary differential equation of
the second order with constant coefficients relative to the
function 9(y)

d*y
dy?
the general solution of which will be obtained in the form

—dy, (11)

S(y)z—q—z"y2+cly+c2.

Let us determine the constants ¢, ¢, using the boundary
conditions (3). Taking into account the relation (10), we trans-
form this boundary condition and

t, I n-1 T
9|y:0= ! kl(t)dt,9|y:y”:_([k](t)dt-rz j o (D=2, (D)dr. (12)

i=1 ;)

Based on the obtained integration constants c;, ¢, using
boundary condition (12), we write the partial solution of prob-
lems (11, 12) in the form

n—1 T
yLZ [ (M @-2,©)dg Jag |+
n i=1 (3, (13)

+j;)“1(C)dC'
0

() =y %ﬂ(yn—yn

If one of the layers of a thermosensitive piecewise homo-
geneous medium is thermally active, then the nonlinear ther-
mal conductivity equation (8) is rewritten as

d dt
—|AMY,1)— |=—q,N(»,y,). 14
dy{ 6 )dy} 9N (,y;) (14)
Taking into account the introduced linearizing function
(10), after performing certain mathematical transformations,
we obtain an ordinary differential equation of the second order

with constant coefficients
da’y

dy?

the general solution of which is

3O =—-qoF ) + ey + ¢

Boundary conditions (12) make it possible to determine
the constants of integration and, as a consequence, the final
partial solution of the boundary value problem (13, 15)

4N (¥,¥)), (15)

n-1 I
9 =4 FD+2> [ [M(©~2AQ)dE Jd+ [ 1, Q).
0

n i=l 1y,

As an example, consider an isotropic two-layer thermo-
sensitive plate. For many structural materials in certain tem-
perature ranges, a linear dependence on temperature of ther-
mophysical parameters is observed in the form

P(O)=py =¥, (16)

where p,(ﬁ, is a reference thermophysical parameter of materi-
als for the first (m = 1) and second (m = 2) layers of the struc-
ture; k,, is a parameter that is in some way related to the tem-
perature coefficient of thermal conductivity. Let us choose
silicon as the material of the first layer of a piece-homogeneous
structure, and germanium as the second layer. Having per-
formed interpolation of the coefficient of thermal conductivity
A1) as a discrete function of temperature for selected con-
struction materials in the range [0; 1127 °C], we obtain rela-
tions that are a partial case of expression (16):

- M) = (67.9 - 0.03395¢) for silicon;
- M(f) = (60.3 — 0.00088¢) for germanium. (17)

Taking into account these dependencies and expressions
(10, 13) to determine the temperature distribution #(y) in the
given structure, we obtain quadratic equations for:

- thefirst 0 <y <y,

Ak, 12 =200 + 00, 2~ kit )+ 9(y) =0; (18)
- the second 0 <y <y,
Aokyt? = 2051 + A0, (2 -kt ) +
+ 1) M=kt (1)) =M@=kt (1) |+ 8(y) =0

layers of the structure and on the surface of their junction y =y,

19)

{X?kl +%0»3k2 —%?kl)}tz(yl)—

2

(20)
- 2{;@] +%(xg —k?)}t(y,)+ 901)+ A0, (2— kit ) =0,
2
where
1
S = Y{qo()b -¥) +7[tkA1 —t(yl)Az]};
2
t
8=y |:‘10(y2 —yl)+"/\1};
3%}
A =02kt ) - M2 -Kkt,);
A, = k(z)(z_kzt(Jﬁ)) _k?(z_klt(yl));
k, :K—(')”, A0 are the temperature and resistance coefficients

of therr”ﬁal conductivity, respectively.

As a result, the temperature field is completely determined
by relations (16—18).

Analysis of numerical results. Fig. 2 shows the behavior of
the temperature field determined by formula (5) in the con-
struction of a five-layer assembly of a lithium-ion battery, in
which the material of the first, third and fifth layers is alumi-
num (A, = A3 = A5 = 282 W/(degree - m) at a temperature of
627 °C), and the second and fourth layers are lithium (A, =X, =
= 52.9 W/(degree'm) at a temperature of 627 °C) for the fol-
lowing values of the layer thickness: y; = 0.05; y, = 0.25; y; =
=0.3;y,=0.5; y5=0.55 m.

As can be seen from the figure, the temperature reaches its
highest value in the middle aluminum layer and monotoni-
cally decreases as a function of the spatial coordinate y to the
value #, = 627 °C, set in the boundary conditions (2).

The presence of corner points, which are observed on the
curves in the area of the inner surfaces of the first and fifth
aluminum layers of the lithium-ion battery assembly, indicates
the continuity of the temperature as a function of the spatial
coordinate y and that at these points a phase transition from

toct
627,5
627,4
627,3
627,2
627,1

627,0

626 9 1 | 1 1 1 1 1 1 1 1 1 »
*’0° 0,05 0,10 0,150,20 0,25 0,30 0,35 0,40 0,45 0,50 y,m

Fig. 2. Temperature distribution 1(y) in the design of the lithi-
um-ion battery unit for different power values q, of the heat-
ing sources:

11— qy=250; 2 — gy =500; 3 — gy = 750; 4 — gy = 1000 w/m’
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the aluminum medium (solid state) into the lithium environ-
ment (liquid state) takes place.

The table shows the value of the temperature field #y) in a
piecewise homogeneous structure, which contains two layers
for a linear model (constant values of the coefficient of thermal
conductivity of the structural materials of the medium for the
first layer A, = 67.9 W/(degree-m) and the second layer A, =
= 60.3 (W/(degree'm) at a temperature of 27 °C) and a non-
linear model (the coefficient of thermal conductivity of struc-
tural materials of a heat-sensitive medium varies depending on
the temperature according to relations (17)). The values of
power of internally concentrated heat sources ¢, and tempera-
ture #, on the boundary surfaces of the plate are equal to
200 W/m? and 100 °C, respectively. The values of the thickness
of the plate layers are y; = 0.2 and y, = 0.4 m. The results of
numerical calculations of the temperature field values indicate
the continuity of the temperature as a function of #(y) of the
spatial coordinate y without corner points on the surfaces of
the junction of heterogeneous layers (temperature as the spa-
tial coordinate function is a smooth function). This confirms
the correctness of both linear and non-linear mathematical
models for determining the temperature field, since the condi-
tions of ideal thermal contact (equality of temperatures and
thermal fluxes) are set on the surfaces of the conjugation of
heterogeneous layers of the medium. The results obtained for
the selected materials based on the linear dependence of the
coefficient of thermal conductivity on temperature differ from
the results obtained for a constant coefficient of thermal con-
ductivity (Table) by 5 %. Their insignificant difference is ex-
plained by the fact that the values of the temperature coeffi-
cient of thermal conductivity for the considered materials, as
shown by the ratio (17), are small, and taking into account
thermal sensitivity leads to a decrease in the temperature val-
ues #(y) for the given materials of the structure layers.

Discussion of results. A method of linearization of the non-
linear mathematical model of thermal conductivity is proposed
and analytical solutions of the corresponding linear and nonlin-
ear boundary value problems for isotropic layered media sub-
jected to internal thermal heating are obtained in a closed form.

Based on the obtained analytical solutions for linear and
nonlinear boundary value problems of heat conduction in iso-
tropic layered media with internal heating, it is possible to de-
velop computational algorithms and software for numerical
implementation. This will make it possible to analyze temper-
ature regimes in individual structural elements and nodes of
mechanisms and devices exposed to various thermal effects, in
particular, to identify unknown parameters, to increase ther-
mal resistance, which helps to increase their service life.

Conclusions. In the process of developing and studying lin-
ear and nonlinear mathematical models for determining tem-
perature fields and analyzing temperature regimes caused by
internal heat sources for structures geometrically described by
isotropic layered structures, a minor influence of taking into

Table

Values of the temperature field #,()) and #,(y) for a constant
coefficient of thermal conductivity of the material of the
medium layers (linear model) and linearly variable with

temperature, respectively

y 0.0125 0.0250 0.0750 0.1250 0.1750
1) 100 100.007 | 100.034 | 100.053 100.063
H(y) 100 100.006 | 100.032 | 100.049 | 100.059

y 0.2250 0.2750 0.3250 0.3750 0.4125
1) 100.066 | 100.061 100.047 | 100.023 100
KH(y) 100.062 | 100.057 | 100.043 100.021 100

t,(y) denotes the temperature value for the linear model, and #,(y)
denotes the temperature value for the nonlinear model.

account the thermal sensitivity of structural materials on the
temperature distribution in these environments was revealed.
This is explained by the fact that the value of the temperature
coefficient of thermal conductivity for the selected materials,
which characterizes their thermal sensitivity at a given tem-
perature interval, as shown by the ratio (17), is small. In the
future, research will be conducted for a number of materials
used in the process of designing mechanisms and digital de-
vices for their control, regarding the effect of thermal sensitiv-
ity on temperature distribution using the above developed lin-
ear and nonlinear mathematical models for determining tem-
perature fields, and based on this, the analysis of temperature
regimes in thermosensitive layered environments. Taking into
account the thermal sensitivity of structural materials signifi-
cantly complicates the process of solving the corresponding
nonlinear boundary value problems of thermal conductivity,
but the sought solutions of these problems describe the tem-
perature behavior as a function of spatial coordinates more
adequately to the real physical process.
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MareMaTi4Hi MoJeJli BU3HAYEHHS TA aHAMI3Y
TEIUIOBUX PeXHMIB Y KOHCTPYKIISIX MeXaHi3MiB
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«JIbBiBCbKa TOJNITEXHiKa»,

MeTta. Po3po0sieHHs JIiHIHHUX i HEJIHIMHUX MaTeMaTUuy-
HUX MOJIeJIei TeIJIONPOBITHOCTI 17151 i30TPOMTHUX HEOAHOPII-
HUX CEpPelOBUIL i3 BHYTPILIHIM HarpiBaHHSM, YHacCJilIOK
YOTO € MOXKJIMBICTh MiABUIIUTU TOUYHICTh BU3HAYEHHS TEM-
rnepaTypHUX MOJiB, 10 B MOAAJIBLIOMY BIJIMHE Ha e(eKTUB-
HICTb METO/1iB MPOEKTYBAHHSI MEXaHi3MiB i IPUCTPOIB, OKpe-
Mi eJIEMEHTH i B3I KOHCTPYKIIili SIKMX € 1IapyBaTOl CTPYK-
TYpH Ta MiAIaI0ThCs TETUIOBOMY HaBaHTaXEeHHIO.

Mertoauka. JIisi po3poOyieHHs JiHIHHUX 1 HeJXiHIHHUX
MaTeMaTUIHUX MOJeJIeil TeMIIepaTypHOTO TOJIsI Ta aHaTi3y
TeMIIepaTypHUX PeXMMIB Yy IIapyBaTUX CEpPeAOBMIIAX i3
BHYTPILIHIM TEIJIOBUM HarpiBaHHSIM, Koe(illieHT Teruio-
MPOBIIHOCTI ONMUCAHO SIK EAMHE 1IiJIe 3a JOMOMOI0I0 acuMe-
TPUYHUX OAMHUYHUX (yHKuUi. Lle mnpuBoauTH 10
pO3B’3yBaHHSI OIHOro IU(pepeHLiaIbHOrO pIBHSIHHS 3
CUHTYJISIpHUMHU Koe(dilliEHTaMM SIK Y JIiHiiHil, TaKk i B HeJTi-
HilHI KpalloBUX 3a/1auyax TEIJIOMPOBIAHOCTI 3 BiIMOBiAHM-
MW KpailOBUMU YMOBaMU.

Pesyabratn. OTprMaHi KBaapaTHi piBHSIHHS, IKMMU BH-
3HAYalOTbC aHATITUYHI PO3B’SI3KM JIIHIHOI 1 HediHilHOL
KpaiioBUX 3afa4 TETUIOMPOBITHOCTI ISl MIAPYBATOl MJIACTU-
HM i3 BHYTPIIIIHIM TETUIOBUM HaBaHTaXKEHHSIM.

HayxkoBa HoBu3Ha. [lossirae B HaBeieHOMY CITOCO0i JliHe-
apusalii HeJiHiifHOT MaTeMaTU4YHOI MOJENi TEeIUIONpPOBiI-
HOCTi Ta OTpUMaHHi B 3aMKHYTOMY BUIJISIII aHATITUYHUX
PO3B’SI3KiB BilMOBITHUX JIiHIHOI i1 HEJiHIITHOT KpailoBUX 3a-
[a4 ISl i30TPOITHUX IIAPYBATUX CEPENOBUILL, LI TiIAI0THCS
BHYTPIilLIHLOMY TEIJIOBOMY HarpiBaHHIO.

IIpakTuyna 3HauumicTb. Po3po0iieHi jiHiliHa i HeliHiiHA
MaTeMaTUYHi MoJeJli BA3BHAYEHHS TeMIIEPaTypHOTo PO3MOIi-
JIy y IIapyBaTUX KOHCTPYKLISIX IPY BHYTPIIIIHBOMY HarpiBaH-
Hi 1al0Th 3MOTI'Y aHaJIi3yBaTH MPOLIeCU TeTIO0OMiHY Ta 3a6e3-
MEYUTU TEPMOCTINKICTh TAKMX KOHCTPYKIIiiA, a TAKOX TiABU-
LIMTH i Ta 3aXMCTUTH LI KOHCTPYKIIi Bijl IeperpiBaHHs, 110
MOXe TIPU3BECTU IO TIOLIKOMKEHb SIK OKPEeMUX BY3JIB i efne-
MEHTIB MeXaHi3MiB, TaK i BCi€l KOHCTpPYKIlii B 1iioMy. OTpu-
MaHi aHaJITU4YHI PO3B’SI3KM MOXYTb OYTM BMKOPHUCTaHi HJIsI
MPOTHO3YBaHHS TeMIIEPATYPHUX MOJIB y 1IaxTax, MiI3eMHUX
cepeoBUIIAX i MeXaHi3Max ripHUYOro 00JIagHaHHSI, 30KpeMa,
y OypoBUX i MiI3eMHUX KOMITPECOPHUX CTAHLIiSIX, BEHTUJISI-
LIMHMX cucTeMax Ta iHIIOMY OOJIaiHAHHI, IO TOKpAIye
edeKTUBHICTb pOOOTH Ta 3MEHIIIYE BUTPATU KOPUCHOI €HEPrii.

Kumouosi cioBa: memnepamypue noae, menaonpogionicmo,
mepmocmitikicms, AiHeapu3youa yHKyisa, wapysama cmpyx-
mypa, cuHeyaapHi Koegiyicumu
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