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MATHEMATICAL MODELS FOR DETERMINING AND ANALYZING THERMAL 
REGIMES IN MINING INDUSTRY MECHANISM STRUCTURES

Purpose. To develop linear and nonlinear mathematical models of heat conduction for isotropic heterogeneous media with 
internal heating. This will allow for an increased accuracy in determining temperature fields, which will subsequently impact the 
effectiveness of designing mechanisms, devices, and individual components of structures that have a layered structure and are 
subjected to heat stress.

Methodology. For the development of linear and nonlinear mathematical models of the temperature field and the analysis of 
temperature regimes in layered media with internal thermal heating, the coefficient of thermal conductivity is described as a whole 
using asymmetric unit functions. This makes it possible to solve a differential equation with singular coefficients in both linear and 
nonlinear boundary value problems of heat conduction with appropriate boundary conditions.

Findings. Quadratic equations are obtained to determine the analytical solutions of linear and nonlinear boundary problems of 
heat conduction for a layered plate with internal heat load.

Originality. The scientific novelty lies in the given method of linearization of the nonlinear mathematical model of heat con­
duction and obtaining analytical solutions, in a closed form, of the corresponding linear and nonlinear boundary value problems 
for isotropic layered media subjected to internal heating.

Practical value. The developed linear and nonlinear mathematical models for determining the temperature distribution in 
layered structures with internal heating make it possible to analyze heat exchange processes and ensure the thermal stability of such 
structures. This also makes it possible to increase the heat resistance of structures and protect them from overheating, which can 
lead to damage to individual components and elements of mechanisms, as well as to the entire structure as a whole. The resulting 
analytical solutions can be used to predict temperature fields in mine shafts, underground environments and mechanisms of min­
ing equipment, in particular, in drilling and underground compressor stations, ventilation systems and other equipment, which 
improves work efficiency and reduces useful energy consumption.

Keywords: temperature field, thermal conductivity, thermal stability, linearizing function, layered structure, singular coefficients

Introduction. In mechanical engineering, in particular, for 
mechanisms of the mining industry, separate nodes of struc­
tures and their elements in the form of layered structures that 
are exposed to temperature effects are widely used. The design 
and development of such mechanisms, where individual ele­
ments and nodes have a piecewise homogeneous structure and 
often operate under conditions of constant heating or cooling, 
involves not only expanding their capabilities and improving 
their performance, but also ensuring stable operation, high re­
liability, and thermal stability. Increasing the capacity of such 
mechanisms and their integration into the system significantly 
complicates the problem of thermal resistance to thermal 
loads of their structures, which partially or completely fail due 
to thermal overloads.

Since, as noted above, the above­mentioned structures op­
erate in a wide range of temperatures, their high operating pa­
rameters necessitate consideration and solution of nonlinear 
boundary value problems due to the dependence of the thermal 
and physical parameters of structural materials on temperature 
and heat transfer conditions on the temperature of their sur­
faces, since calculations of temperature fields based on linear 
mathematical models of heat conduction processes do not al­
ways give satisfactory results. Therefore, in order to develop the 
most adequate mathematical models for the real process, it is 
necessary to take into account the dependence of thermophys­
ical parameters on temperature, density of surface flows and 
intensity of internal heat sources, changes in the shape of the 
medium, and possible phase and structural transformations.

Literature review. Determination of temperature regimes 
in both homogeneous and heterogeneous structures attracts 
the attention of many researchers. Temperature plays an im­
portant role in determining the physical and chemical charac­
teristics of materials. This effect becomes especially significant 

when there are significant temperature fluctuations, as ob­
served in heat conduction processes. Temperature changes 
lead to certain changes in material properties, which makes it 
difficult to determine the temperature distribution and ther­
mal stress. As a result, determining the thermoelastic state of 
structures becomes much more difficult.

In [1], the thermoelastic problem of an elliptical cavity in 
an infinite medium was investigated using the generalized 
complex variable method. As a result of the analysis of the 
thermoelastic state of the medium, the temperature depen­
dence of the coefficient of thermal conductivity, modulus of 
elasticity and coefficient of thermal expansion is taken into ac­
count. Taking into account these dependencies, analytical ex­
pressions for temperature, heat flux, and thermoelastic fields 
were obtained.

Analytical solutions of the distribution of temperature, 
displacements and stresses in layered rectangular plates with a 
simple support, which are subjected to thermomechanical 
loads, are presented. The material properties of the layers de­
pend on the temperature [2].

The thermoelastic parameters of functionally graded po­
rous plates with different material distributions were investi­
gated and it was found that thermal stresses are more sensitive 
to material distribution than temperature and deformations [3].

In paper [4], research is aimed at determining the effect of 
the temperature dependence of material properties and indi­
cators of the composite gradient in functionally graded rectan­
gular plates on temperature, deformation, and stress.

The solution for the steady­state reaction of thick cylinders 
subjected to pressure and external heat flow on the inner sur­
face is presented [5].

The thermal analysis of cylinders of different thicknesses 
made of functionally graded materials under the influence of 
heterogeneous heat flows concentrated on the inner and outer 
layers was performed [6, 7].
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The work [8] is dedicated to the determination of the solu­
tion of the non­stationary problem of thermal conductivity 
and thermoelasticity for functional gradient thick spheres. 
Thermophysical and thermoelastic parameters of materials, 
with the exception of Poisson’s coefficient, are arbitrary func­
tions of the radial coordinate. The axisymmetric stationary 
problem of thermal conductivity and thermoelasticity for hol­
low functional gradient areas relative to the heat source is con­
sidered.

Thermal modeling of electronic devices is one of the most 
important tools for assessing their reliability in various operat­
ing modes. In [9], a thermal model of electronic devices is pre­
sented, which is based on experimental temperature measure­
ment data obtained by an infrared camera. These data are in­
put for the developed mathematical model, which is based on 
the method of finite differences and some known physical de­
pendencies. The developed model was verified by comparing 
the simulation data with the experimentally obtained ones. It 
can be used to study the thermal behavior of the device under 
various operating conditions.

In most portable electronic devices, in addition to the tem­
perature of multiple heat sources, i. e., the connection tem­
perature, the body temperature, i. e., the skin temperature, 
should also be monitored to protect the user’ s work. Thus, the 
creation of a compact device­level thermal model for predict­
ing skin temperature will not only improve the efficiency of 
thermal design at an early stage, but also help develop a mod­
el­based temperature control strategy. In the paper [10], dy­
namic compact thermal models of two portable electronic 
devices, including a smartphone and a laptop, were first cre­
ated based on the convolution method. Under the assumption 
of linear time­invariant systems, the skin temperature of the 
two test devices can be quickly calculated after obtaining the 
step response of each heat source.

The increase in specific power of electronic devices, due to 
higher performance and miniaturization requirements, has 
prompted researchers to search for new and alternative meth­
ods of temperature control. Since most electronic devices are 
often subjected to high­frequency power cycles, cooling sys­
tems must also be able to manage transient thermal profiles to 
delay the temperature response and reduce temperature gradi­
ents within the device that can lead to thermal stress and, in 
the long run, electronic device failure. The integration of 
phase change materials (PCM) into heatsinks for electronic 
devices represents an interesting technical system to increase 
the thermal inertia of the cooling system while providing a 
more stable operating temperature in the electronic compo­
nents. Article [11] discusses the latest research trends in this 
area, with a special focus on electric batteries, power electron­
ics, and the use of portable devices.

Much of the effort in electronics temperature management 
has been focused on developing cooling solutions that provide 
steady­state operation. However, electronic devices are in­
creasingly used in applications involving time­varying work­
loads. These include microprocessors (including those used in 
portable devices), power electronic devices, and arrays of pow­
erful semiconductor laser diodes. Transient solutions for tem­
perature management are becoming essential to ensure the 
performance and reliability of such devices. New requirements 
for temperature control in transient processes are defined in 
[12], and cooling solutions described in the literature for such 
applications are presented, focused on the time scales of the 
thermal response.

Existing methods have been improved and new approach­
es have been developed to create mathematical models that al­
low analyzing heat exchange in piecewise homogeneous me­
dia. Flat and spatial models of heat transfer are presented, in 
which the differential equations contain coefficients that de­
pend on the thermophysical properties of the phases and the 
geometric structure. Approaches for determining analytical 
and analytical­numerical solutions of boundary value prob­

lems of heat conduction are presented. Heat exchange pro­
cesses occurring in homogeneous and layered structures with 
inclusions of canonical form were analyzed [13].

Problem formulations. 1. Uneven heating is one of the fac­
tors that cause deformations and stresses in elastic media. If 
nothing prevents its expansion as the temperature rises, then 
this medium is deformed and no stresses arise. However, if the 
temperature rises unevenly there and the environment is not 
homogeneous, temperature stresses are formed as a result of 
expansion. Let us remind you that the stress­strain state is a set 
of internal stresses and deformations of the structure or its ele­
ments that occur as a result of external loads, temperature 
fields, or other factors acting on it. The so­called thermo­
stressed deformation state of structurally heterogeneous media 
is determined by calculation and experimental methods in the 
form of the distribution of stresses, deformations and move­
ments in the structure, which is important for assessing the 
static strength and resource of structures at all stages of their 
life cycle. If we do not take into account the temperature dis­
tribution of the influence of stresses and deformations caused 
by force factors inherent in most practical problems, then the 
first and independent step for the study on temperature stress­
es is the determination of temperature fields, which is the main 
task of the analytical theory of heat conduction. In some cases, 
the determination of temperature fields is an independent 
technical problem, the solution of which makes it possible to 
determine temperature stresses. In this regard, we will present 
a method for determining the temperature distribution by spa­
tial coordinate for a thermally active layered medium, which is 
in conditions of thermal stress due to concentrated, uniformly 
distributed heat sources with a certain density on the entire 
surface of the structure. This structure consists of n heteroge­
neous layers, on the contact surfaces ( 1, 1)iy i n= -  of which 
the conditions of equality of temperatures ti = ti + 1 and heat 
flows 1

1
i i

i i
t t
y y

+
+

∂ ∂
l = l
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 (conditions of ideal thermal contact) 
are set, and the boundary surfaces of the medium are main­
tained by a certain constant temperature tk (Fig. 1).

We describe the thermophysical parameters for an isotro­
pic piecewise homogeneous medium in the form of a function 
on the spatial coordinate
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where ( 1, )ip i n=  is the thermophysical parameter of the i th 
layer of the medium.

The relation (1) and the conditions of ideal thermal con­
tact make it possible to write down one differential equation of 
thermal conductivity to determine the temperature field t(y) in 
a piecewise homogeneous structure

 div[l(y) grad t(y)] = -q0 (2)

with a boundary condition on the boundary surfaces

 t(0) = t(l ) = tk, (3)

where tk is the temperature value given on the boundary sur­
face; l(y) is the coefficient of thermal conductivity of a piece­
homogeneous structure, described by the expression (1); l is a 
thickness of a piece­homogeneous structure; q0 = const is the 
power of uniformly concentrated internal heat sources.

Let us enter the function

 T(y) = l(y)t(y), (4)

and we differentiate it by the variable y, taking into account the 
expression (3) for the thermal conductivity coefficient l(y). As 
a result, we get the ratio

1

1
1

( ) ( ) ( ) ( ),
n

i i i i
i

dt dTy t y y y
dy dy

-

+ +
=

l = - l -l δ -∑



ISSN 2071-2227, E-ISSN 2223-2362, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2023, № 6 75

considering which we will rewrite the original equation (2) in 
the form

12
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δ z =
z

 is the asymmet­

ric Dirac delta function; S+(z) is the asymmetric unit function 
[13].

The general solution of this equation is
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Let us determine the values of ( )( 1, 1),it y i n= -  using the 
relations (4, 5)
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Taking into account the boundary condition (3) and the 
relation (5), we find the integration constants c1 and c2
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As a result, the temperature field in a layered plate with 
uniformly distributed internal heat sources is determined by 
expression (5).

For mining industry mechanisms, tasks that consider the 
process of heating or cooling of various systems with internal 
heat sources concentrated in the area of a particular node or its 
element are important. The reliability of the operation of 
parts, assemblies, component structures, and in some cases 
the entire structure cannot be guaranteed without observing 
the proper thermal condition. Thermal and temperature con­
ditions limit the operational characteristics of the equipment, 
affect the choice of structural materials, impair the dynamic 
capabilities of the device as an object of regulation and con­
trol, determine technical and economic indicators, dimen­
sional and weight parameters, etc. For this, there are clearly 
defined requirements for the operating modes of such struc­
tures, primarily optimal, transitional and basic thermal condi­
tions for their operation. In this regard, we will consider the 
case when the internal heat sources are concentrated on the 

surface of one of the layers of a piece­homogeneous medium. 
Then the thermal conductivity equation (2) will take the fol­
lowing form
 div[l(y) grad t(y)] = -q0N(y, yj), (6)
where

N(z, zj) = S+(z - zj - 1) - S+(z - zj).

Let us determine the general solution of equation (6) in the 
form
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Here
F(y) = 0.5y2N(y, yj) + F1(y) - F2(y);

F1(y) = yj - 1(0.5yj - 1 - y)S+(y - yj - 1);

F2(y) = yj(0.5yj - y)S+(y - yj).

Using ratios (4, 7), we determine the values ( )( 1, 1)it y i n= -  
(temperature values at the interface surfaces y = yi of dissimilar 
layers of the medium)
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We obtain the constants of integration c1 and c2 using 
boundary condition (3) and relation (7)
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2. Consider an isotropic thermosensitive layered struc­
ture. Due to the thermal sensitivity of the materials of the 
medium, the conditions of ideal thermal contact at the junc­
tion of the layers ( 1, 1)iy i n= -  will be rewritten as ti = ti + 1, 
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 (Fig. 1). In the given structure, it is nec­

essary to determine the temperature distribution t(y) along the 
spatial coordinate y, which will be obtained by solving the 
nonlinear heat conduction equation

 0( , ) dty t q
dy dy
d  

l = - 
 

 (8)

with the boundary condition (3), where
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is the thermal conductivity coefficient of the thermosensitive 
layered system; ( 1, )i i nl =  is the thermal conductivity of the ith 

layer of the structure.
Let us introduce a linearizing function
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We differentiate the expression (10) by the variable y taking 
into account the relation (9), as a result of which we obtain

( , ) .ty t
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l =
∂ ∂

Fig. 1. Isotropic piecewise homogeneous structure
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Based on this, the original nonlinear thermal conductivity 
equation (8) is reduced to an ordinary differential equation of 
the second order with constant coefficients relative to the 
function ϑ(y)

 02

2
,q

dy
d

= -
ϑ

 (11)

the general solution of which will be obtained in the form
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Let us determine the constants c1, c2 using the boundary 
conditions (3). Taking into account the relation (10), we trans­
form this boundary condition and
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Based on the obtained integration constants c1, c2 using 
boundary condition (12), we write the partial solution of prob­
lems (11, 12) in the form
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If one of the layers of a thermosensitive piecewise homo­
geneous medium is thermally active, then the nonlinear ther­
mal conductivity equation (8) is rewritten as
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dty t q N y y
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d

y
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 

 (14)

Taking into account the introduced linearizing function 
(10), after performing certain mathematical transformations, 
we obtain an ordinary differential equation of the second order 
with constant coefficients

 0

2
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d q N y y
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 (15)

the general solution of which is

ϑ(y) = -q0F(y) + c1y + c2.

Boundary conditions (12) make it possible to determine 
the constants of integration and, as a consequence, the final 
partial solution of the boundary value problem (13, 15)
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As an example, consider an isotropic two­layer thermo­
sensitive plate. For many structural materials in certain tem­
perature ranges, a linear dependence on temperature of ther­
mophysical parameters is observed in the form

 0( ) ,m mp t p t= - κ  (16)

where 0
mp  is a reference thermophysical parameter of materi­

als for the first (m = 1) and second (m = 2) layers of the struc­
ture; κm is a parameter that is in some way related to the tem­
perature coefficient of thermal conductivity. Let us choose 
silicon as the material of the first layer of a piece­homogeneous 
structure, and germanium as the second layer. Having per­
formed interpolation of the coefficient of thermal conductivity 
l(t) as a discrete function of temperature for selected con­
struction materials in the range [0; 1127 °C], we obtain rela­
tions that are a partial case of expression (16):

 ­ l(t) = (67.9 - 0.03395t) for silicon;

 ­ l(t) = (60.3 - 0.00088t) for germanium. (17)

Taking into account these dependencies and expressions 
(10, 13) to determine the temperature distribution t(y) in the 
given structure, we obtain quadratic equations for:

­ the first 0 ≤ y ≤ y1

 0 2 0 0
1 1 1 1 12 (2 ) ( ) 0;k kk t t t k t yl - l +l - +ϑ =  (18)

­ the second 0 ≤ y ≤ y2
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layers of the structure and on the surface of their junction y = y1
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where

0 2 1 1 2
2

1( ) ( ) ( ) ;ky y q y y t t y
y

   ϑ = - + L - L    

1 1 0 2 1 1
2

( ) ( ) ;kty y q y y
y

 
ϑ = - + L 

 
0 0

1 2 2 1 1
0 0

2 2 2 1 1 1 1

(2 ) (2 );
(2 ( )) (2 ( ));

k kk t k t
k t y k t y

L = l - -l -

L = l - -l -

0 ,m
m

m

k
κ

=
l

0
ml  are the temperature and resistance coefficients 

of thermal conductivity, respectively.
As a result, the temperature field is completely determined 

by relations (16–18).
Analysis of numerical results. Fig. 2 shows the behavior of 

the temperature field determined by formula (5) in the con­
struction of a five­layer assembly of a lithium­ion battery, in 
which the material of the first, third and fifth layers is alumi­
num (l1 = l3 = l5 = 282 W/(degree ⋅ m) at a temperature of 
627 °C), and the second and fourth layers are lithium (l2 = l4 = 
= 52.9 W/(degree∙m) at a temperature of 627 °C) for the fol­
lowing values of the layer thickness: y1 = 0.05; y2 = 0.25; y3 = 
= 0.3; y4 = 0.5; y5 = 0.55 m.

As can be seen from the figure, the temperature reaches its 
highest value in the middle aluminum layer and monotoni­
cally decreases as a function of the spatial coordinate y to the 
value tk = 627 °C, set in the boundary conditions (2).

The presence of corner points, which are observed on the 
curves in the area of the inner surfaces of the first and fifth 
aluminum layers of the lithium­ion battery assembly, indicates 
the continuity of the temperature as a function of the spatial 
coordinate y and that at these points a phase transition from 

Fig. 2. Temperature distribution t(y) in the design of the lithi-
um-ion battery unit for different power values q0 of the heat-
ing sources:
1 – q0 = 250; 2 – q0 = 500; 3 – q0 = 750; 4 – q0 = 1000 w/m3
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the aluminum medium (solid state) into the lithium environ­
ment (liquid state) takes place.

The table shows the value of the temperature field t(y) in a 
piecewise homogeneous structure, which contains two layers 
for a linear model (constant values of the coefficient of thermal 
conductivity of the structural materials of the medium for the 
first layer l1 = 67.9 W/(degree∙m) and the second layer l2 = 
= 60.3 (W/(degree∙m) at a temperature of 27 °C) and a non­
linear model (the coefficient of thermal conductivity of struc­
tural materials of a heat­sensitive medium varies depending on 
the temperature according to relations (17)). The values of 
power of internally concentrated heat sources q0 and tempera­
ture tk on the boundary surfaces of the plate are equal to 
200 W/m3 and 100 °C, respectively. The values of the thickness 
of the plate layers are y1 = 0.2 and y2 = 0.4 m. The results of 
numerical calculations of the temperature field values indicate 
the continuity of the temperature as a function of t(y) of the 
spatial coordinate y without corner points on the surfaces of 
the junction of heterogeneous layers (temperature as the spa­
tial coordinate function is a smooth function). This confirms 
the correctness of both linear and non­linear mathematical 
models for determining the temperature field, since the condi­
tions of ideal thermal contact (equality of temperatures and 
thermal fluxes) are set on the surfaces of the conjugation of 
heterogeneous layers of the medium. The results obtained for 
the selected materials based on the linear dependence of the 
coefficient of thermal conductivity on temperature differ from 
the results obtained for a constant coefficient of thermal con­
ductivity (Table) by 5 %. Their insignificant difference is ex­
plained by the fact that the values   of the temperature coeffi­
cient of thermal conductivity for the considered materials, as 
shown by the ratio (17), are small, and taking into account 
thermal sensitivity leads to a decrease in the temperature val­
ues t(y) for the given materials of the structure layers.

Discussion of results. A method of linearization of the non­
linear mathematical model of thermal conductivity is proposed 
and analytical solutions of the corresponding linear and nonlin­
ear boundary value problems for isotropic layered media sub­
jected to internal thermal heating are obtained in a closed form.

Based on the obtained analytical solutions for linear and 
nonlinear boundary value problems of heat conduction in iso­
tropic layered media with internal heating, it is possible to de­
velop computational algorithms and software for numerical 
implementation. This will make it possible to analyze temper­
ature regimes in individual structural elements and nodes of 
mechanisms and devices exposed to various thermal effects, in 
particular, to identify unknown parameters, to increase ther­
mal resistance, which helps to increase their service life.

Conclusions. In the process of developing and studying lin­
ear and nonlinear mathematical models for determining tem­
perature fields and analyzing temperature regimes caused by 
internal heat sources for structures geometrically described by 
isotropic layered structures, a minor influence of taking into 

account the thermal sensitivity of structural materials on the 
temperature distribution in these environments was revealed. 
This is explained by the fact that the value of the temperature 
coefficient of thermal conductivity for the selected materials, 
which characterizes their thermal sensitivity at a given tem­
perature interval, as shown by the ratio (17), is small. In the 
future, research will be conducted for a number of materials 
used in the process of designing mechanisms and digital de­
vices for their control, regarding the effect of thermal sensitiv­
ity on temperature distribution using the above developed lin­
ear and nonlinear mathematical models for determining tem­
perature fields, and based on this, the analysis of temperature 
regimes in thermosensitive layered environments. Taking into 
account the thermal sensitivity of structural materials signifi­
cantly complicates the process of solving the corresponding 
nonlinear boundary value problems of thermal conductivity, 
but the sought solutions of these problems describe the tem­
perature behavior as a function of spatial coordinates more 
adequately to the real physical process.
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Table
Values of the temperature field t1(y) and t2(y) for a constant 

coefficient of thermal conductivity of the material of the 
medium layers (linear model) and linearly variable with 

temperature, respectively

y 0.0125 0.0250 0.0750 0.1250 0.1750

t1(y) 100 100.007 100.034 100.053 100.063

t2(y) 100 100.006 100.032 100.049 100.059

y 0.2250 0.2750 0.3250 0.3750 0.4125

t1(y) 100.066 100.061 100.047 100.023 100

t2(y) 100.062 100.057 100.043 100.021 100

t1(y) denotes the temperature value for the linear model, and t2(y) 
denotes the temperature value for the nonlinear model.
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Мета. Розроблення лінійних і нелінійних математич­
них моделей теплопровідності для ізотропних неоднорід­
них середовищ із внутрішнім нагріванням, унаслідок 
чого є можливість підвищити точність визначення тем­
пературних полів, що в подальшому вплине на ефектив­
ність методів проєктування механізмів і пристроїв, окре­
мі елементи й вузли конструкцій яких є шаруватої струк­
тури та піддаються тепловому навантаженню.

Методика. Для розроблення лінійних і нелінійних 
математичних моделей температурного поля та аналізу 
температурних режимів у шаруватих середовищах із 
внутрішнім тепловим нагріванням, коефіцієнт тепло­
провідності описано як єдине ціле за допомогою асиме­
тричних одиничних функцій. Це приводить до 
розв’язування одного диференціального рівняння з 
сингулярними коефіцієнтами як у лінійній, так і в нелі­
нійній крайових задачах теплопровідності з відповідни­
ми крайовими умовами.

Результати. Отримані квадратні рівняння, якими ви­
значаються аналітичні розв’язки лінійної й нелінійної 
крайових задач теплопровідності для шаруватої пласти­
ни із внутрішнім тепловим навантаженням.

Наукова новизна. Полягає в наведеному способі ліне­
аризації нелінійної математичної моделі теплопровід­
ності та отриманні в замкнутому вигляді аналітичних 
розв’язків відповідних лінійної й нелінійної крайових за­
дач для ізотропних шаруватих середовищ, що піддаються 
внутрішньому тепловому нагріванню.

Практична значимість. Розроблені лінійна й нелінійна 
математичні моделі визначення температурного розподі­
лу у шаруватих конструкціях при внутрішньому нагріван­
ні дають змогу аналізувати процеси теплообміну та забез­
печити термостійкість таких конструкцій, а також підви­
щити її та захистити ці конструкції від перегрівання, що 
може призвести до пошкоджень як окремих вузлів і еле­
ментів механізмів, так і всієї конструкції в цілому. Отри­
мані аналітичні розв’язки можуть бути використані для 
прогнозування температурних полів у шахтах, підземних 
середовищах і механізмах гірничого обладнання, зокрема, 
у бурових і підземних компресорних станціях, вентиля­
ційних системах та іншому обладнанні, що покращує 
ефективність роботи та зменшує витрати корисної енергії.

Ключові слова: температурне поле, теплопровідність, 
термостійкість, лінеаризуюча функція, шарувата струк-
тура, сингулярні коефіцієнти
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