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DATA ANALYSIS SOLUTIONS TO IMPROVE BLASTING EFFICIENCY
IN MINING

Purpose. To build an identification model to determine the appropriate explosion parameters value with reasonable cost. To
optimize blasting works design at each blast site with the calculation of delay time based on the model used.

Methodology. Blasting for mining is an issue of utilizing the most of explosive energy in order to achieve the highest smashing
ability and the smallest level of vibration. In modern explosive techniques, the total amount of explosive is divided into parts to deto-
nate after differential time intervals. This solution creates interference between stress waves causing the durability of rock structures
to be reduced and the blasting efficiency to be improved. Although delay time plays an important role in this method, so far its value
is still calculated empirically at the blast site due to the irregular characteristic of the rock environment. Technical design parameters
for explosion including delay time has been also determined from smart analysis software and simulation models. However, their
applicability is limited because of high payments and strict implementation conditions. The method proposed in the study overcomes
this drawback and its effectiveness is proven by the process of analyzing experimental data at Nui Beo Mountain of Vietnam.

Findings. An identification model is developed based on the information including: explosion delay time value; average propa-
gation speed of the vibration wave; maximum amplitude of the vibration wave.

Originality. Basic data analysis software and an artificial neural network model are used. A new data analysis algorithm is es-

tablished to determine the optimal explosion delay time value.

Practical value. A simple and reasonable-cost solution is formed for improving the efficiency of blasting in mining.

Keywords: blasting mining, identification model, data analysis

Introduction. Overview. Compression wave and vibration wave.
When an amount of explosive is detonated, the explosive energy
creates a compression wave that causes pressure to break the rock
and soil around the explosion point. The compression wave
spreads around and gradually reduces the energy due to loss in
rock breaking. When the wave energy drops below the breaking
level and is only capable of creating rock vibrations, the compres-
sion wave is called a vibration wave [1]. If the energy loss is con-
sidered insignificant, the explosive energy is the sum of the com-
pression wave energy and vibration wave energy. The compres-
sion wave has a short duration and a very short propagation dis-
tance, located in the dangerous area of the blasting site. There-
fore, waves cannot be studied directly. The breaking capacity of a
compression wave is often calculated indirectly through param-
eters such as vibration level and wave propagation velocity.

The vibration level is the oscillation velocity of rock parti-
cles around the equilibrium position when a wave passes
through. It depends on the distance from the measuring point
to the explosion point and the amount of explosive used in one
blast. The longer the measuring distance and the smaller the
amount of explosives, the lower the vibration. The amplitude of
vibration rock particles is the amplitude of the vibration wave.

Wave propagation velocity represents the speed at which vi-
bration wave moves from the explosion point to the measurement
point on the earth’s crust. Its speed ranges from about 305—
6100 m/s depending on the area. In a certain area, this value is
almost constant [1, 2]. For this reason, creating a time delay after
each explosions causes the vibration wave between explosions to
propagate slowly after a corresponding period of time. The prop-
agation speed is large, while the distance from one explosion
point to other is small, so the wave peaks propagate and never
meet each other (Fig. 1). Therefore, they are separated and the
level of vibration only depends on the amount of explosives at one
time and not on the amount of explosives in the whole yard [1].

The energy emitted from the explosion point travels in all
directions with equal value in a homogeneous medium. Then,
the vibration level in all directions will be equal. However, vi-
bration transmission is not ideal in reality because changes in
the earth’s structure, geological structure, cracks, ... will
change the level and frequency of vibrations.
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Components of vibration wave. The vibration waves include
three components: compression wave — P; shear wave — S and
Rayleigh — R wave. Among them, the one that brings the high-
est efficiency in breaking rock and also causes the most dam-
age is the P wave. P spreads horizontally, straight from the ex-
plosion point to the measurement point. According to the LVT
coordinate system (Fig. 1), the L axis represents the P wave
component. The propagation velocity of the P wave (V) is the
largest [2], in some cases Vp~ 2V (Vyis the propagation speed
of the shear wave).

In the field of geophysics, when monitoring and surveying
engineering geology, geophysicists are almost only interested
in Pwaves to determine the state parameters of the rocky envi-
ronment [2].

The value of V) depends on many factors and properties of
the rocky environment through which it is transmitted, such
as: density of soil and rock; compression resistance; degree of
cracking; direction of cracking; the degree of layering of the
rock mass, the degree of hydration. These parameters have a
close relationship, mutual influence making the V» change ac-
cording to a non-linear and non-repeating rule in different
geological areas. Exploration and survey works are carried out
regularly and continuously over a long period of time to deter-
mine the characteristics of geological changes for a certain
field. These characteristics all show the changing trends of V)
according to parameters, typically as [2]:

- inverse proportional to soil moisture;

- proportional to density y and density p;

- proportional to compression resistance o;

- inverse proportional to the porosity of the rock;
and many other factors [2].

Effect of delay time on vibration level and breaking efficiency.

The total amount of explosive is divided into parts to ex-
plode sequentially after appropriate time delays. This solution
creates new free faces during blasting, which reduces struc-
tural strength. Besides, when there are many explosions in a
blast, it will create the phenomenon of rocks flying and collid-
ing with each other, increasing the possibility of breaking.

As the total amount of explosives per delay blasting time de-
creases, the vibration level decreases. If the number of explosive
parts increases, the number of delay times will be correspond-
ingly larger, leading to the magnitude of the vibration decreases.
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Fig. 1. Vibration wave propagation in delay blasting and LVT
coordinate system

There are many random and irregular factors in natural
rock environment. So, theoretical formulas are difficult to
match practice. Furthermore, delay time proposed by incon-
sistent points of view makes it difficult to be applied. Current-
ly, delay times are defined from the experimental lookup tables
experiments and they are adjusted to suit the respective explo-
sion conditions in each area (Table 1).

The simplest experimental formula for determining delay
time (ms) is as follows

t=k-R,

where £k is the coefficient depending on the properties of rock
(ms/m), for very hard rock k£ = 3, hard rock k = 4, medium
hard rock k=5, soft cracked rock k = 6. k is also called a back-
ground coeflicient. R is burden (m).

For each type of rock with a certain hardness range, the
delay time value corresponding to the magnitude of the burden
will be determined (Table 1).

Research on delay blasting. The delay blasting method is
based on the properties of compression wave propagation at
short distances. Laboratory-scale tests of Rossmanith indicate
that the interaction of compression waves and subsequent cracks
can be used to increase the degree of rupture. To produce an in-
terference effect, the delay time must be significantly shorter
than usual. However, due to natural rock fractures, the delay
time need to be selected based on the specific characteristics of
the rock at the blast site. This information is not precisely defined
for each explosion, so it is difficult to design an explosion with an
interactive target. That is also the main reason for not being able
to model explosions using mechanical calculation methods [4].

The compression wave propagating in the rock mass con-
sists of two parts: longitudinal wave P and shear wave .S. Each
wave has the first half period of compression and the second
half period of tensile. In the area near the explosion point,
these two waves overlap; when spreading outward, they sepa-
rate because the speed of the P wave is greater than that of the

Table 1
Delay time for multi-row explosion [3]
Type of Stiffiess Delay time (ms) a(cncq(;rding to burden R
il
sot S 353345 456 6-8 | s-10
Hard and 12—20 | 12—15 | 19-21 | 25-31 | 31-37 | 37—44
very hard
Medium 8§—14 19-21 | 25-31 | 31-37 | 37—40 | 43-50
hardness
Sticky and 4-8 25-31 | 31-37 | 37—40 | 43—-50 | 50—65
soft

S wave. With the two holes spaced apart, the fundamental in-
teraction of the compression waves from the two holes is: P1-
P2, S1-S2, P1-S2, P2-S1. Interactions can occur many times
when suitable explosives are used, creating compression fluc-
tuations over a considerable period of time. The compression
and deformation fields due to the minehole depend on the
wave speed in the rock mass [5].

Katsabanis, et al. performed tests on 92 x 36 x 21 cm rock
blocks in the laboratory. Hole distance is 10.2 cm, hole diame-
ter 11 mm, hole depth 18 cm. The experimental time delay var-
ied in the range 0—4000 microseconds. In another case study,
60 x 40 x 25 cm stone blocks are used [6]. Drill holes are 12 mm
in diameter, 23 cm deep, and 10.5 cm apart. Delay time is tested
from 100 microseconds or more. The results show that the de-
gree of smashing decreases in case of simultaneous explosion
(delay time is zero), the degree of breaking increases gradually
as the delay time increases. There is little change as the delay
time increases from 10 microseconds to 1 ms. The broken rock
becomes larger when the delay time is long due to the fact that
the rocks are stably separated by cracks [6, 7]. The optimal
smashing level is achieved when the “differential time/ burden”
ratio is between 4 and 10 ms/m.

Sjoberg [8] used simulation methods and computational
tools to test Rossmanith’s hypothesis on a model with a hole
diameter of 311 mm, a column height of 8 and 11 m with delay
times, amount of explosives and hole distances changed.
A small effect created from the compression wave interaction,
but it was local and did not significantly improve the degree of
rupture. The test also gave the result that, with a long enough
delay time when the compression wave has passed through the
second hole leading to the most degree of breaking.

Johansson and Ouchterlony [9] used laboratory prototypes
to study the way in which short delays generate vibration wave
interactions for the purpose of improving the degree of smash-
ing. The model has 2 rows, each row has 5 holes 10 mm deep, the
distance between rows is 110 mm. The measured P-wave veloc-
ity is 3800 m/s, the time for the wave to propagate to the neigh-
boring hole is about 28 microseconds. The experimental delay
time range ranges from the time value that the P wave has not yet
reached the adjacent hole to the time value that the S wave has
passed through the adjacent hole, corresponding to the range of
0—146 microseconds. They found that the second row of holes
had a significantly different and more uniform degree of rupture
than the first row, because of the reverse penetration of cracks
from the first row. This shows that the previous compression in
the rock mass plays an important role in changing the degree of
crushing when performing a subsequent detonation.

Johnson [10] studied the effect of shock wave impact in rock
mass and in explosive columns. The experiments were carried
out on small concrete blocks, divided into three groups, using
50 gr/ft bursting wires. In the first test, the explosive wire passed
through the center of the block and detonated from one end of
the concrete block to avoid wave collisions. In the second test,
the explosive wire still penetrated the center of the block but was
detonated at both ends to create a blast wave impact through the
center of the concrete block. The third test had no explosives at
the center of the rock, but only at the ends. Detonate both ends
to create a vibration wave that travels through the concrete block
and collides in the center of the block. Simultaneous detonation
and delay time explosion are both performed. This test is similar
to what happens between explosion holes in real life. The results
showed that the second test created a radial crack similar to the
first test but with an additional crack across the center. For the
third test, at the center of the block, there were no explosives but
there was vibration wave impact of larger fragments. As such, the
collision of vibration waves between the blast holes reduces the
degree of breaking.

These experimental results indicated that, if delay time is
much longer than the time needed to produce wave interac-
tion, then the degree of disruption is the best. However, if it is
too long, the degree of breaking will be decreased [10].
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Yang and Rai [11] investigated the effect of row-to-row de-
lay time on full-scale degree of breaking and particle size dis-
tribution at the Century Cements limestone quarry in Raipur,
India. Two delay time samples were tested of 17 and 25 ms,
corresponding to the “delay time/stage resistance” ratios of 8
and 12 ms/m respectively. Measurement of particle size and
size distribution was performed using digital image analysis
software. The results show that the 17 ms delay sample gives
better smashing. This means that the difference in delay time
affects the degree of rock crushing. However, these are two av-
erage delay time samples, which are not representative of the
short and long time ranges.

Especially in recent years, thanks to the development of
computer technology and control technique, research is
spread across all aspects helping explosions to be almost com-
pletely controlled [12, 13]. All factors affecting explosive effi-
ciency are taken into account. Modeling and simulation solu-
tions using software tools can simulate the evolution and re-
sults of an explosion based on a continuously updated data-
base. Many research studies can be carried out such as: solu-
tions for data analysis and forecasting [10]; simulating the ef-
fect of the amount of explosives creating an explosion vibra-
tion [14]; simulating the propagation of blasting vibration
waves [15], rock vibrations [16]; simulating the results of ex-
plosions [2, 8]. The simulation model results are an effective
tool to test different adjustments and control solutions, thereby
finding the most suitable explosion parameters.

As the main and basic effect, blasting vibration wave is the
most interested research. The wave characteristics are digitized,
divided into small groups and analyzed according to each stage
and characteristic [13, 10]. These studies used different tech-
niques and algorithms based on the computational speed of the
computer [17—19]. Engineering and technology development
makes it possible to digitize and differentiate wave characteristics
with high precision. The information obtained is more complete
and the applied analysis algorithms are also more complex.

Most studies aim to predict the level of blast vibration, the
level of smashing and the level of cracking [20, 21]. Forecasting
methods are based on recognition techniques using artificial neu-
ral networks along with various algorithms [22—24]. Some recent
studies have chosen to apply artificial intelligence and machine
learning techniques to improve forecasting accuracy [25, 26].

In developed countries, lots of synchronous equipment
and software systems have been built based on these research
results. Fig. 2 describes the process of performing a mine blast,
in which the information from multiple inputs is systemati-
cally used. The BIMS (Blast Information Management Sys-
tem) software uses this information as database to analysis,
design and build parameters for the next explosion.

A complete and detailed database plays an important role
in this system, so it requires modern and highly accurate mea-
suring and monitoring equipment, such as:

- flycam, camera with high resolution, high recording speed;

- system of monitoring and forecasting equipment for ge-
ology, climate and weather;

- the monitoring system of vibration level after an explo-
sion. Furthermore, controllers, high-tech construction and
explosion equipment are also needed to meet the software’s
calculation results.

For instance: blast hole drilling and setting equipment, ex-
plosive control equipment and detonators.

In delay blasting techniques, devices such as electronic de-
lay blast controllers or electronic detonators make delay time
extremely simple to control. Thanks to the ability of control-
ling blast to each mine hole, the delay time value can be flexi-
bly controlled to meet all software calculation results. At the
same time, these devices have a very high level of safety. Fig. 3
describes two explosion control solutions that are commonly
used in countries with developed mining technology. Fig. 3
depicts the explosion control structure with the detonation de-
vice. Communication information is encrypted with high se-
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Fig. 2. System structure and process of designing and construct-
ing a blasting with the support of BIMS (Blast Information
Management System)

curity to ensure there is no unintended explosions and silent
mine phenomena are completely controlled.

Systems using high-tech equipment and BIMS software have
been achieved high effectiveness. But it is difficult for developing
countries to apply because of their high price, including equip-
ment procurement costs, operating costs and maintenance costs.

In recent years in Vietnam, popular technologies studied
in blasting have been electronic detonators; using drones to
take photos before and after explosions in some quarries; using
particle size measurement software. However, their results
have not been widely used in practice. Blasting at mines is car-
ried out mainly based on the experience of engineers with lim-
ited information. In some mines, old-style blasting equipment
and out of dated technology are still being used.

The research in this paper was conducted based on basic
theories of blasting techniques, analysis software systems and
modern explosive devices. From there, the authors proposed a
simple solution suitable to economic and technological condi-
tions in VietNam to improve the efficiency of blasting.

Theoretical basis. Blasting for mining is an issue of utilizing
the most of explosive energy with each type of structure and phys-
ical properties of rock in each mining area. At the explosion point,
the energy generated compression wave and vibration wave in two
stages. In this study, they are called Blast Energy Waves (BEW).

The propagation velocity of BEW and the delay time value
has a close relationship. Technically, it is easy to measure the
propagation velocity. However, those measurement techniques
have only been used in experiments and not in actual mine ex-
plosions. Besides, the vibration level of rock particles caused by
BEW s the basis for evaluating the effectiveness of using explo-
sives as well as the crushing efficiency of the explosion. So, it
can be seen that a complete analysis of vibration wave data can
provide important information for delay time selection.

If we assume that all explosion parameters remain un-
changed, the delay time value now depends entirely on the
rock and soil properties in the explosion area. Then, the re-
search focuses on two main contents: to analyze vibration wave
data to identify the current state of rock in the explosion area;
to determine the appropriate delay time value to improve
smashing efficiency.
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Fig. 3. Blast control solutions for every drill hole:

a — the system using electronic detonators; b — the system using the
solution of grouping boreholes with intermediate controllers

The optimality of the identification model depends on two
basic factors: the accuracy of the data and the amount of col-
lected data. Because the duration of a mine explosion is very
short, data needs to be gathered from many explosions over
time. This is the reason why the data is not synchronized.
Therefore, boundary conditions are needed, as followed:

1. All parameters of the explosion are the same except for
the delay time value.

2. The implementation process follows technical standards
and explosive energy is fully utilized.

3. The value of delay time is within the allowable limits of
designed value.

With those boundary conditions, the energy generated at
the explosion points is the same and equal to the sum of the
compression wave energy and the vibration wave energy. The
vibration wave amplitude presents the effective use of explosive
energy. Identification model uses vibration wave amplitude to
determine the delay time value at which vibration level is mini-
mal. This means that the model is both capable of determining
a reasonable delay time and predicting the vibration level. The
results of measuring the vibration during explosion will be im-
portant information to evaluate the effectiveness of using explo-
sive energy and the reasonableness of the selected delay time
value, from which the model can make necessary adjustments.

The identification model is built based on the information
including: delay time value; average propagation speed of the
vibration wave; maximum amplitude of the vibration wave. In
particular, for each change in the delay time, there will be a
pair of corresponding values of the model: wave propagation
velocity and maximum amplitude. This pair of output values
will then be used as reference information to calibrate the
model’s input values to minimize the vibration level.

Because the collected data cannot meet all the set bound-
ary conditions, information including the distance from the
explosion point to the point and the largest instantaneous ex-
plosive is added in this research to increase the accuracy of the
model. On the other hand, the accuracy of the input data
source determines the identification result and directly affects
the prediction and control results. Therefore, data needed to
be standardized through the process of identifying the sources
of noise, providing solutions to eliminate interference or re-

duce it to a constant value. The structure of the control and
forecasting system is described in Fig. 4.

With the above objectives, the research content focuses on:

1. Selecting areas to study and collect experimental data.

2. Developing solutions and performing data analysis.

3. Determining the relationship between the delay time value
and the propagation velocity of BEW from the analysis results.

4. Building a model to determine the appropriate delay
time for the study area.

Collecting and analyzing data. Data acquisition. The re-
search area selected is Nui Beo coal mine, in Ha Long city,
Quang Ninh province, Vietnam.

The device used to measure the level of vibration is Blast-
mate III from Instantel, Canada. Some technical specifica-
tions of the Blasmate as follows.

Components:

1. The device of reading and writing data.

- recording and deleting measurement data from the sen-
sor along with necessary application information for the user
(time, measurement location, management unit, information
about the measurement object);

- recording interval for each measurement: 1-90 s;

- sampling rate: 1024, 2048, 4096 samples/s;

- memory capacity: 15 MB. Stores data for 1000 measure-
ments at sampling rate of 2048 samples/s and recording time
of 1 s. Expandable to 60 MB;

- vibration range that can be recorded: 0.2—30.0 mm/s;

- can connect to modem for remote control. Connect an
external USB for easy data copying;

- printing results right at the scene in graph form.

Power source: 6—12VDC rechargeable battery.

2. Geophone.

- Measuring range 0.127—254 mm/s.

To ensure the analysis is accurate, the data collection pro-
cess needs to follow certain principles such as:

- collected vibration wave data is fully and continuously
recorded over time;

- the mine explosions are delay mine explosions carried
out in the same area;

- direction of installation of measuring equipment relative
to direction of detonation; Measurement methods and proce-
dures are unchanged.

Data analysis. Building analytical solutions. In a certain area,
in each stage, the vibration wave propagation speed is almost
constant [2]. Therefore, in a delay mine explosion with many ex-
plosion points in different positions, detonated at different times,
it will cause different vibration wave peaks at the measurement
point over time. Thus, it is possible to interpolate the propagation
speed of the vibration wave from analyzing the relationship of the
delay time and the period between the two subsequent peaks and
with the distance from the explosion points to measuring point.

In order to build a relationship between the delay time peri-
od and the propagation speed of BEW, the research aims to find
a solution to analyze vibration wave data obtained from explo-
sions during mining to determine relatively average propagation
velocity of BEW from explosion point to measurement point.

Geology and topography are the most important factors
influencing the wave propagation speed. However, because the
selected and analyzed data are obtained from the same explo-
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Fig. 4. Principle of delay time correction and prediction of vi-
bration level for delay blasting
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sion, these factors are the same. The propagation path of vi-
bration waves from the explosion point to the measurement
point which is considered the same. The direction of explosion
is also an element that impacts the vibration wave, but it main-
ly affects the level of vibration. Thus, environment factors and
explosion method can be ignored when determining the vibra-
tion wave propagation velocity of a delay mine explosion.

The solution is determined as follows.

Assumption: Two amounts of explosives placed at A and B
are detonated sequentially with a delay time interval of AT mil-
liseconds, AB = 1 m. The measuring device placed at C will
receive two peaks of vibration waves corresponding to two
detonations (Fig. 5). The possibilities are given in Table 2.

The data analysis algorithm determines the location of
wave peaks and the time interval between peaks as depicted in
Fig. 6.

Analysis results. Vibration wave data is described according
to 3 LVT axes corresponding to the spatial coordinate system,
in which the L axis is horizontal in the direction from the ex-
plosion point to the measurement point, the V and T axes are
in the direction perpendicular to the L axis. PPV data describes
the combined vibration of all three directions. Among the
components of BEW, the longitudinal wave component with
the greatest ability to break rock is described mainly in the
horizontal direction. Therefore, in this paper, the authors ana-
lyzed two data sets: L-axis characteristics and PPV character-
istics, respectively. This activity has two purposes of getting
more reference results and determining data source suitable
for the given requirements. Some analysis results are shown in
Figs. 7, aand 8, a.

The vibration waves obtained at the measurement point
are a combination of very complex interactions from the blast
site, then they propagate in the heterogeneous rock environ-
ment. That causes a lot of noisy data.

Waves along the L axis have the fastest propagation speed.
The analysis is only performed from the time the wave begins
to be received until the time equivalent to the last explosion
point according to delay time. So, the wave forms at this stage
according to L axis data and PPV synthesis data is relatively
similar. The results of analysis of about 497 cases in separate
explosions proved that.

The analysis also shows that, in the middle of the explo-
sion process, the interaction between energy waves is very
complex. Data contains a lot of errors at that time. Therefore,
only the first wave peaks should be selected for analysis due to
the mutual influence of the waves is not much.

The analysis results are depicted in characteristic form in
Fig. 9.

Identifying the relationship between BEW propagation veloc-
ity and delay time. With a large enough database, the system is
identified by training an artificial neural network (ANN) mod-
el. The basic input data for training the ANN network is vibra-
tion wave propagation velocity and the delay time period. The
output data is the vibration level.

After each new amount of data is added, the training pro-
cess needs to be re-done.

Fig. 5. Theoretical description of the method for calculating the
velocity of propagation of vibration waves due to blasting

| Absolute value : M[n] = M[|n|] I

n = Number of elements
f = Frequency domain to look for, T=1/f = Sampling
period to consider
TO = Time to start the review
S = number of samples measured in 1 second
Q[t] = array containing the time of the wave peak

Vref = T.S (where to find the wave peak

>
A
N
Vref<n >
Y

Sta = Vref - 0.05.5; Sto = Vref +0.05.5;
SL_P=0 (number of vertices found)

i

i=Sta (start value var)
Max = 0; The time of peak Vt=i;

DeltaT(j]=Q[j+1]-Q]]
(Array of time intervals
between wave peak)

t=Ve(1/S)
SL P=SL P+1
Q[SL_P-1]=V(Max,t)

Fig. 6. Data analysis algorithm

In order to increase the accuracy of the model, some extra
information is added, including:

- distance from explosion point to measurement point; delay
times between consecutive mine holes or groups of mine holes;

- amount of explosive per explosion;

- propagation velocity of vibration waves.

Table 2

Cases that occur when calculating wave propagation speed

Measurement location C Note

Calculation formula

described in case (1)

No. 1 Distance CA = CB, the two wave peaks are independent: the time interval | Undefined
between the two wave peaks will be approximately the delay time AT as

No. 3 1. If CA > CB, the two wave peaks overlap as described in case (2).
2. If CA = CB, the two wave peaks are independent, the time interval between
the two wave peaks is Af as described in cases (3) and (4)

(CA— CB)/AT
|CA — CBY/IAT - Af

No. 3 +) CA # CB, the two wave peaks are independent, the time interval between the |CA— CB|/IAT- A4
two wave peaks is At as described in cases (3) and (4)
No. 4 +) CA— CB=AB=a (m), the two wave peaks are independent, the time a/(AT - Ar)

interval between the two wave peaks is Az as described in cases (3) and (4)

ISSN 2071-2227, E-ISSN 2223-2362, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2023, N2 6 43



, =

o

Amplitude

o
o

02 12 14 16 18 2
Time (secs)
a
|T:0.2666 |
|27 |y
—Y
2. /
{T:0.3066 |
T.o.l&sj ‘A: 165 ‘
° A:1.52
3 \ P |
2 e \
= T:01738
H A:102 / ‘ }} _lj
T . T:03613 |
{7:0.2471 {A:0.762
Al | Anieal
| | [T02139 il h ‘ ﬂ I h

oo

..... 02275 /
R %’.zs” | V U\}

0042 0084 0126 0.168 0.2 02260252 0.284 0.31 0.336 0.368 0.394 0436 0478

Time (secs)
b
3
[—ppvt |
25 {— PPV1

2
()
T
2
G515
£
<

05} A A
PP T v

0 02 04 06 08 1 12 14 16 18 2
Time (secs)
c
T T T T
T:0.001953 i P i
A:3.076 T:0.2666 —PPV{
[A:2836 g
2 ’ ‘T 0.3096
T:0.1904 A 2.005
E A
[T02158
° A A:1.698
3 101113 | (110126 | ’\ n
219 T'DOABSS‘ A1301 [-A1295 i)
g a1 T:0.3555
< J\ V\ {JA:09755‘ rJf
L A

Y B T:0.165 h
”m T:0.09277- T:0:1455 A:1.208

IRLESA Tl

|
|
LWV

v T V v s W
0 0.042 0.1 0.142 0.184 0226 0.268 031 0352 0.3%4 0436 0478
Time (secs)

Fig. 7. Data analysis of a certain explosion number 01:
a — measurement results of Blastmate 111 in blast 01 (L axis); b —
analysis of blast wave data 01 (L axis); c — measurement results of
Blastmate 111 with explosion 01 (PPV); d — analysis of blast wave
data 01 (PPV)

In particular, the propagation velocity value is calculat-
ed according to the data analysis method for each explosion,
the remaining values are recorded in reality in the study
area.

The general structure of the ANN model is described in
Fig. 10. The training algorithm chosen is the backpropagation
algorithm. Authors uses 75 % analyzed data set to build an
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Fig. 8. Data analysis of a certain explosion number 02:
a — measurement results of Blastmate 111 with blast 02 (L axis);
b — analysis of blast wave data 02 (L axis); c — measurement re-
sults of Blastmate III with explosion 02 (PPV); d — analysis of
blast wave data 02 (PPV)

identification model, the remaining 25 % will be used as a ref-
erence for evaluating the established model. The software used
for training is Matlab2013.

The process of testing and analyzing results with different
neural network structures shows that the network structure
with two hidden layers with the training function “rainscg”
gives the best results.
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Fig. 9. Summary graph of analysis results

The optimal neural network structure found includes two
hidden layers: the first and the second layer with 69 and 60 cells,
respectively. Training process with 170000 epochs. The algorithm
chosen is the “backpropagation algorithm” with the method for
adjusting and updating the weights according to the scaled con-
junction gradient principle, the training function is “trainscg”.
The transfer function of the hidden layers is chosen to be “tan-
sig”, the transfer function of the output layer is “purelin”. The
training result have built a neural network structure that simu-
lates the research object — Custom Neural Network 1 (Fig. 11, a).

To test the quality of the identification model, 25 % of the
previously left data corresponding to 100 datasets are used.
These data are supplied to the Input Data port for the Custom
Neural Network model, Fig. 12.

The two graphs depicting the results are quite similar
(Fig.11, b). The deviation of the model’s forecast results com-
pared to the actual results is commonly below 2 %, about 13 %
of forecast results having a deviation of 2—5 %. There was 1
result with a deviation of over 10 %.

Testing the model. According to the control and prediction
principles (Fig. 12) along with the set boundary conditions,
the identification model is the tool to determine the delay time
for purpose of minimizing the vibration level. Tests were done
by using obtained model for some cases, as follows.

Case I: Simultaneously change the value of the delay inter-
val time in the range of 8—22 ms. The amount of explosive is
changed while the other parameters remain unchanged.

Input data
Measuring Distance

- Veas N\ N\ output 2\ %“t”‘,“
i /| /| laver L|/ ata:
- Amount of explosion one time PPV

Previous Delay
- Previous Propagation velocity Hidden layers

Fig. 10. General structure diagram of ANN model for system
identification

Out1

Input Data

Custom Neural Network

a

True data
Predict data

50
Data Number

b

Fig. 11. Model testing results:

a — results of the built neural network; b — comparison between the
value taken from the proposed model and the actual value

Khoang cach do1

Custom Neural Network1

Van toc lan truyent

Khoang cach do1

Custom Neural Network1

Van toc lan truyent

b

Fig. 12. Structure diagram depicting test cases:

a — first case: both Vs1 and Vs2 change; b — second case: Vsl =
= const and Vs2 changes

The simulation structure diagrams performed on Matlab
2013 are shown in Figs. 12, a, b corresponding to case 1, case 2.
The test results are shown in Figs. 13 and 14 respectively.

Case 2: All delay time values are within a specified range,
one of which is constant, the others are varied. The deviation
between the two values cannot be larger than the constant
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Fig. 13. Test results for the first case:

a — the best delay time value is 15.8 ms, the predicted vibration
level is 1,439 mm/s; b — the best delay time value is 11.9 ms, the
predicted vibration level is 1,418 mm/s; ¢ — the best delay time
value is 12.2 ms, the predicted vibration level is 1,423 mm/s
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value to ensure that the delay diagram is not changed. Two
tests were conducted with the constant value equal to 15 ms,
variable values are from 8—23 ms and constant value is 25 ms,
variable values are 15—35 ms. The amount of explosive is var-
ied while the other parameters remain unchanged.

The results in Figs. 13 and 14 show that, when the maxi-
mum amount of instantaneous explosive changes, the delay
time value also changes because the training data set is not
uniform according to the set conditions. However, the test re-
sults in each case determine the appropriate delay value and
predict the corresponding vibration level. The experimental
results have met the model building goals.

Algorithm to determine delay time and predict vibration
level. Based on the obtained model, a software can be built to
determine the appropriate delay time and predict the vibration
level for the next explosion. The delay time value is calibrated
so that the expected vibration level is as small as possible. The
initial time value is set to the value used in the last explosion.
The software algorithm is described in Fig. 15.

Conclusion. Although the database is not guaranteed due
to many influencing factors, adding more information has
helped the training results identify an ANN network. Test re-
sults show that the identification model is relatively accurate.
The experiments have demonstrated the method of building
artificial neural networks to identify systems is completely ap-
propriate. The model is a tool for delay timing correction.

The data used in this study is small and just for one area,
the data variation is not much so it is not possible to describe
all cases. The results are only valid within the used data set.

The result of training the neural network is a system trans-
fer function with defined input and output data. The boundary
conditions are as follows:
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Fig. 14. Experimental results for the second case:

a — the best pair of delay time values is 15 and 9.65 ms, the pre-
dicted vibration level is 1.6 mm/s; b — the best pair of delay time
values is 15 and 10.7 ms, the predicted vibration level is
1,366 mm/s; ¢ — the best pair of delay time values is 25 and
18.4 ms, the predicted vibration level is 0.482 mm/s

| Tvs0=Tvs1, Vxt, Txt |

Determine the trend of Vrd change of the last 10 explosions

Determine the trend of Tvs change of the last 10 explosions |

Vxt=1&Txt=1
or Vxt=-1&Txt=-1
or Vxt=0&Txt=1

Vxt=1&Txt=-1
or Vxt=-1&Txt=1
or Vxt=0&Txt=-1

Run ANN model

Tvs1-10<=Tvs0<=Tvs1+10

Print out Tvs0
and Vrd0

Fig. 15. Algorithm to determine delay timing and predict vibra-
tion level for the next explosion:
Vrd is peak vibration velocity, Tvs is delay time; Vxt is variation
trend of wave propagation velocity; Txt is variation trend of set de-
lay time values; Index 0 is for the next explosion; Index 1 of the
explosion just performed

1. The design parameters of the explosions are equivalent
except for the delay time.

2. The drilling and construction process ensures correct
technique and design.

3. The distance, location, and direction of the sensor sta-
tion from the explosion center are selected to be the same or
equivalent in all explosions.

4. Explosions are carried out under basically the same
weather and environmental conditions.

Then, the control structure is built with data of two inputs:
wave propagation velocity and expected delay time, while the
output is the predicted vibration level. However, in reality it is
very difficult to meet all standards and conditions, so other
data can be added to increase the accuracy of the model and
better match reality.

Training a neural network and using it to build software
that proposes delay times and predicts the level of vibration for
the next explosion can be understood as a solution for building
artificial intelligence algorithms. Perfecting an Al algorithm
requires a lot of time for testing, analyzing results and adjust-
ing. With the specificity of geology, each area will give a differ-
ent model.
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Pimenns 3 ananizy ganmx 3aaus
nigBuIIeHHsS e(hpeKTUBHOCTI BUOYXOBHX POOIT
y TipHU40100YBHiii POMHUCIIOBOCTI

Mao Xiey, Dam Txanv JToan™

XaHONCHKUIA TIpHUYO-T€O0JIOTIYHUM YHIBepCUTET, M. XaHOM,
Couianictnuna Pecriy6sika B’etHam
* ABTOp-KOpecnoHAeHT e-mail: thanhloanbkhn@gmail.com

Mera. [ToGynoBa ineHTHdiKaLiliHOI Moaei BU3HAYEHHS
BiIMOBIAHUX 3HAYEHb MMapaMeTpiB MiIPUBHUX POOIT i3 TIpuU-
WHATHOIO BapTicTio. OnTuMizallisi TpOEKTYBaHHSI MiAPUBHUX
poOIT Ha KOXHIil poOoyiil AUISIHLI 3 po3paXyHKOM 4acy 3a-
TPUMKU Ha 6a3i MoJieJli, 110 BUKOPUCTOBYETHCSI.

Metoauka. [linpuBHi pob0OTH NpU BUAOOYTKY KOPUCHUX
KOMaJIMH — 1€ MTUTaHHSI BAKOPUCTAHHSI MAKCUMaJIbHOI €HEP-
il BUOYXY JIJIs1 JOCSITHEHHS HaOUIbI1101 pyHHIBHOI 31aTHOCTI
Ta HalMEHIIOro piBHs BiOpallii. ¥ cydyacHUX TEXHOJOTisIX
MiIpUBHUX POOIT 3arajbHa KiJIbKICTb BUOYXOBOI pEUYOBUHU
NIJIUTHCSI HA YACTUHMU, 110 AETOHYIOTh Yepe3 Pi3Hi MPOMIiKKU
yacy. Take pillleHHs1 CTBOPIOE iHTEP(hEPEHLIiI0 MixK XBUISIMU
Harpy>XeHb, 1110 MPU3BOAUTH A0 3MEHILEHHS MilIHOCTI Tip-
CBKUX MOPI i MiIBUIIEHHS e(PEeKTUBHOCTI MiAPUBHUX POOIT.
HesBaxkaloun Ha Te, 110 Yac 3aTPUMKM Bilirpa€e BakKJIMBY
pOJIb y LIbOMY METOi, J0Ci Ooro 3HAYeHHST PO3pPaxXxOBYIOTh
eMITipUYHO Ha MicLi BUOYXY uepe3 HeperyJisapHi XapakTepuc-
TUKU TipCbKUX nopifa. Takox Oyiu BU3HAYEHi TeXHIYHI MPo-
€KTHi mapaMeTpu BUOYXy, BKJIIOYAIOUM Yac 3aTPUMKH, 3a J10-
TIOMOTOI0 TIPOTPAMHOTO 3a0e3MeYeHHsT iHTeIeKTyaTbHOTO
aHali3y Ta iMiTauiitHux Mopeneil. OgHaK iX 3aCTOCYBaHHS
oOMexeHe yepe3 BUCOKY BapTiCThb i BaxkKKi yMOBU peastizallil.
Mertoauka, 3arporioHoBaHa B po0OOTi, yCyBa€ Lieit HeloJIiK i i
eeKTUBHICTL NOBefeHa y TIpolieci aHalli3y eKCIepuMeH-
TaJIbHUX JaHUX Ha ripcbkomy MacuBi Hyii beo y B’erHami.

Pesyabratn. PospobGiiena wmopenps ineHTudikaiii Ha
OCHOBI JIaHHUX, 1110 BKJIIOYAIOTh Y ceOe: 3HaueHHs yacy 3a-
TPUMKHU BUOYXY; CEPEIHIO LIBUAKICTb MOIIMPEHHS BiOpalliii-
HOIT XBWJIi; MAaKCUMaJIbHY aMIUTITY1y BiOpaLiiiHOT XBUJIi.

HaykoBa HoBu3HA. BukopucraHe 6a3oBe mnporpamHe 3a-
Oes3reyeHHs I aHai3y JaHUX i MOJIeb ITYYHOT HEMpPOHHOT
Mepexxi. CTBOpeHO HOBUI aJiTOPUTM aHATi3y JaHUX ISl BU-
3HAYEHHSI ONTUMAJIbHOTO 3HAYEHHSI Yacy 3aTPUMKU BUOYXY.

IIpakTnyna 3uaunmicts. ChopMoBaHe MPOCTE Ta EKOHO-
MiUHO OOI'pYHTOBaHE PillIeHHS 3 MiABUILIEHHS e(DEeKTUBHOCTI
MiIPpUBHUX POOIT NTPU BUITOOYTKY KOPUCHUX KOTIAJIUH.

KunrouoBi caoBa: sudyxosi pobomu, ioenmugikayitina mo-
denwv, ananiz OaHux
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