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APPLICATION OF THE WAVELET TRANSFORMATION THEORY
IN THE ALGORITHM FOR CONSTRUCTING A QUASIGEOID MODEL

Purpose. To investigate the interaction of geodesic and normal altitude indicators according to quasigeoid data, the joint use of space 

measurements and those performed on the Earth’s surface in the implementation of geodetic tasks. In this article, the task is to create a 

calculation algorithm for further research on the quasigeoid model and the application of the model in solving geodetic problems.

Methodology. Reliable determination of the height anomaly requires great accuracy, therefore, the theory of wavelet-transfor-

mation was used in the model of the variant of space technologies as an alternative to the laborious leveling of the Earth’s surface, 

which characterizes the actual fl uctuations from the normal of the Earth’s gravitational fi eld, when calculating the mean square 

deviations of the plumb line is an urgent task.

Findings. A block diagram of the calculation algorithm has been compiled using a software package to solve the boundary 

problem of physical geodesy, in which the Earth’s surface is subject to modern space measurements.

Originality. The use of wavelet analysis for processing information from satellite data in geodesy improves the results of image 

classifi cation, and the coeffi  cients of the wavelet transformation can be used as indicators for recognizing the coordinates of points 

with high accuracy.

Practical value. Application of the theory of wavelet transformations as a powerful mathematical tool for solving problems of 

geodetic information, data compression and recovery, increasing computing performance, encoding information.

Keywords: physical geodesy, coordinate systems, gravitational fi eld, geoid, quasigeoid, gravimetric height, modeling, coordinate 
transformation

Introduction. At the end of the 20 th century, a new and im-

portant direction in the theory and technology of signal process-

ing emerged and is successfully developing, which means 

“splash” or “small wave”. Graphs with splash functions have 

become more frequent. They can be used to decompose signals 

instead of harmonic waves when solving problems of physical ge-

odesy. The term wavelet was introduced in their article by Gross-

mann and Morlet in connection with the analysis of the proper-

ties of seismic and acoustic signals. These studies served as the 

beginning of an intensive study on wavelets in the next decade by 

a number of scientists such as Dobechies, Meyer, Mallat, Farge, 

Chui and others. Wavelet theory is a powerful complement to 

Fourier analysis and provides a more fl exible technique for signal 

processing for the entire time period of its observation. The main 

advantage of wavelet analysis is its ability to detect highly local-

ized changes in signals, whereas the discrete Fourier transform 

does not give this, because its coeffi  cients refl ect the behavior of 

the signal. Due to the completeness property of this system, it is 

possible to restore the process by means of an inverse wavelet 

transform to solve physical geodesy problems.

For centuries, for geodetic measurements and determina-

tion of the shapes and sizes of the geoid and quasigeoid, me-

chanical, later optical instruments were used [1].

Fundamental research on the parameters of the Earth con-

tinues to the present time and is relevant in science. On the 

main stages of solving this problem, the following can be noted:

- a spheroid close to an ellipsoid of revolution was con-

sidered from the 17 th century to the second half of the 19 th 
century;

- a triaxial ellipsoid, which is a model of a more complex 

form of the Earth – a geoid (quasigeoid) from the second half 

of the nineteenth century [2];

- from the 40s of the 20 th century to the present, the fi gure 

of the Earth is considered to be a body limited by the physical 

surface of the Earth.

Improvement of geodetic information has changed the 

quality of measurements, made it possible to develop geodesy, 

gravimetry as a science, using space technology [3].

The modernization of space methods allows high-preci-

sion networks to be carried out without complex instrumental 

observation with high accuracy subsequent approximations of 

the height anomaly.

The application of space measurement methods using 

global systems that receive a signal from satellites with a cer-

tain constancy allowed it to be distributed, which confi rms the 

known surface of the Earth and the geoid, quasigeoid.

The geoid diff ers from the selected ellipsoid (for example, 

GRS 1980) by less than 100 m. Geocentric positions can now 

be determined using GPS with an accuracy of better than 1 dm 

in a purely geometric way.

In modern studies, it is possible to carry out mathematical 

calculations with greater accuracy in the fi eld of pure gravity 

anomalies than mixed ones, from the solution of the boundary 

problem of physical geodesy, in which the Earth’s surface is 

subject to modern cosmic measurements.

Methods for determining the external gravitational fi eld of 

the Earth are based on the need to know the external gravita-

tional fi eld of the Earth. This problem can be solved in the form 

of a digital model of the average values of gravity anomalies or 

in the form of a system of coeffi  cients in the decomposition of 

the gravity potential by spherical functions and the solution of 

integral equations. In this case, it is possible to increase the ac-

curacy of the fi nal results versatility and theoretical unlimited.

The calculations of the gravitational fi eld using pure grav-

ity anomalies are proved by the integrals performed by 

V. V. Bro var and reduce the errors of the height anomaly and 

the general components of the plumb deviation by several 
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times, relative to mathematical calculations, using mixed 

anomalies.

The main point in improving the accuracy of transformant 

calculations is mathematical solutions that allow using pure 

gravity anomalies, latitude, longitude and geodetic height 

functions. The Neumann integral is used to determine the 

height anomaly, and the transformed Wening-Meins integral 

is used to calculate the components of the plumb deviation.

The modern paradigm based on the use of discrete linear 

transformations proves the sequence of the classical series of solu-

tions to the problems of Molodensky, Neumann, Stokes, and the 

modifi ed Vening-Meins integral. Modern methods of window 

Fourier transforms or discrete Hartley transformations have their 

drawbacks, despite the signifi cant advantage of this approach over 

classical methods for determining coordinates and elevation.

Currently, an optimal wavelet transform methodology has 

been obtained for solving spectral analysis problems, which is 

used to calculate integrals of proper Fourier transforms and 

discrete Hartley transformations with a slight disadvantage, 

which is solved by mathematical wavelet analysis.

Materials and methods. Object of the study. All existing 

methods for determining transformants in modern studies on the 

gravitational fi eld can be divided into classical and modern. Clas-

sical methods are based on integral formulas that require con-

tinuous gravimetric information, which is almost impossible.

In practice, the initial information is discrete, burdened by 

measurement errors and is not known on the entire surface of 

the Earth.

The advent of satellites and new opportunities for studying 

the gravitational fi eld has signifi cantly expanded the range of 

tasks of the theory of the Earth’s fi gure. In recent decades, very 

high-precision global high-resolution geo-potential models 

have appeared [4]. This situation became possible due to the 

introduction of new measurement methods and techniques.

Due to the indeterminacy of the geoid fi gure, a quasigeoid 

acts as an auxiliary surface when studying the physical surface 

of the Earth. Its fi gure, unlike a geoid, is unambiguously deter-

mined by the measurement results, coincides with the geoid 

on the territory of the World Ocean and very close to it on 

land, deviating no more than 2 meters in high mountains and 

a few centimeters on fl at terrain [5].

Global models of the Earth’s gravitational fi eld play an im-

portant role in constructing theories of motion of artifi cial 

Earth satellites, in modeling geodynamic processes and the 

internal structure of the Earth, in the study on natural resourc-

es, in oceanography, in marine and aviation navigation, and in 

solving defense problems, as well as for highly accurate fi gure 

determination Earth needed to establish a common Earth co-

ordinate system [6].

In the world there are two second generation global naviga-

tion satellite systems (GNSS): GPS (USA) and GLONASS 

(Russia). At diff erent stages of deployment, there are two more 

global positioning systems – European Galileo and Chinese 

BeiDou-2 (international name Compass), as well as two region-

al satellite navigation systems, Indian IRNSS and Japanese 

QZSS. GPS is fully operational: as of February 2016, 31 GPS 

satellites are operating in orbit [6]. The constellation of 

GLONASS satellites currently has 27 satellites. The Galileo sys-

tem is being developed by the European GNSS Agency. The 

fi rst Galileo system services for demonstration purposes are ex-

pected to be provided in the coming years. For test tests in 2011–

2012, 4 experienced Galileo system satellites were launched into 

orbit. The full deployment of the Chinese GNSS BeiDou/

Compass was planned by 2020. The satellite constellation of this 

system is to include 35 navigation satellites (5 geostationary and 

30 non-geostationary). The Indian IRNSS system will provide 

regional navigation using 7 satellites launched in geosynchro-

nous orbits. The Japanese regional satellite system QZSS will 

include a constellation of 3 satellites, expanding GPS capabili-

ties for mobile devices, providing more accurate positioning and 

data transmission in the Asia-Pacifi c region [7].

The accuracy of measuring the signal from the satellite to the 

receiver should not be less than (0.25 m + 1mm/km). Achieving 

such accuracy is possible on the basis of the atomic time scale 

and special time support of the satellite system. The satellite uses 

atomic clocks, one second of atomic time in metrology is equal 

to 9,192,631,770 periods of oscillation, corresponding to the 

transition between two ultrathin levels of the cesium atom 133. 

The time scales of navigational artifi cial Earth satellites (NESS) 

and receivers are synchronized with the GNSS system time 

scale. Each GNSS has its own system time, which is atomic time 

and is based on one of the international time scales, as a rule, on 

the UTC (Universal Time Coordinated) scale (Mayer-Guerr T. 

ITG-Grace03s, 2015). Satellite observations to solve the scien-

tifi c and practical problems of geodesy require the registration of 

time instants with very high accuracy in determining heights.

Global navigation satellite systems occupy a special place 

in the space infrastructure, providing continuous access to 

navigation services to consumers on the Earth’s surface, in the 

air and near-Earth space. The most widespread in the world 

are the American and Russian satellite radio navigation systems 

GPS (NAVSTAR) and GLONASS (Global Navigation Satel-

lite System).

Table 1 shows a list of STS stations in the Republic of Ka-

zakhstan, this information is not classifi ed, it is publicly available.

Fig. 1 presents the map of the international network of gas 

stations; Fig. 2 shows the scheme of the network of gas stations 

in Kazakhstan.

Using the GNSS coordinate data, it is possible to obtain ac-

curate information about the transmission of signals to ground 

stations, using the wavelet transform of wave data to solve scien-

tifi c problems of physical geodesy in seismic exploration.

The main type of source information for calculating heights 

remains the data of areal gravity surveys. To accurately deter-

mine the geoid heights, it is necessary to know the internal 

structure of the Earth. As a result, the approach to determining 

the shape of the Earth through the height of the geoid does not 

seem suffi  ciently strict, since the distribution of the mass den-

sity inside the Earth is not known with the necessary accuracy.

At present, a lot of modern methods have been developed 

for determining the transformants of the gravitational fi eld, in 

which the main eff orts are aimed at taking into account the 

specifi cs of real data. Such methods include: variational meth-

od, collocation method, convolution method based on linear 

discrete transforms (for example, fast Fourier transform). 

Naturally, they all have their advantages and disadvantages.

For example, the collocation method, from a mathematical 

point of view, determines functions by selecting an analytical ap-

proximation to a certain number of given linear functionals [9].

This method plays an important role in solving interpolation 

problems, with a further generalization of the collocation theory 

associated with its application to stochastic objects, when “col-

location” is understood as a generalization of the least squares 

method to the case of infi nite-dimensional Hilbert spaces [10].

The practical implementation of collocation models is based 

on the connection of the theory of Hilbert spaces with the repro-

ducing kernel with the covariance theory of random processes.

The covariance functions (autocovariance and mutual co-

variance) of the random processes under study, as well as the 

reproducing core in the functional approach, play a funda-

mental role in collocation models.

The collocation method, as applied to the problems of 

physical geodesy, was developed in foreign works [8, 9].

Digital signal processing uses, as a rule, a discrete repre-

sentation of signals, discrete linear transformations, the math-

ematics of discrete transformations originated in the depths of 

analog mathematics in the 18 th century, mainly in series theo-

ry and their application for approximating functions. But it 

became widespread and developed only in the 20 th century 

with the advent of computers. In principle, in its basic provi-

sions, the mathematical apparatus of discrete transformations 

is similar to the transformations of analog signals and systems. 
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Table 1
Satellite coordinates of GNSS base stations in Kazakhstan [8]

No Code Locality Position Satellite groups Status

1 ASTN Astana Latitude: 51° 09' 09,46359» N Longitude: 71° 32' 

55,82708» E Altitude: 323.814 m

GPS/GLONASS/COMPASS/

GALILEO/QZSS

Working

2 ALM3 Almaty Latitude: 43° 14' 15,17850» N Longitude: 76° 53' 

05,11209» E Altitude: 835.088 m

GPS/GLONASS/COMPASS/

GALILEO/QZSS

Working

3 TLDK Taldykorgan Latitude: 45° 01' 15,39073» N Longitude: 78° 23' 

20,03287» E Altitude: 555.2 m

GPS/GLONASS Working

4 TARZ Taraz Latitude: 42° 54' 25.82496» N Longitude: 71° 22' 

27.87429» E Altitude: 583.9 m

GPS/GLONASS Working

5 SHMK Shymkent Latitude: 42° 19' 06.31780» N Longitude: 69° 36' 

04.16680» E Altitude: 483.421 m

GPS/GLONASS Working

6 KZLR Kyzylorda Latitude: 44° 48' 56,94865» N Longitude: 65° 32' 

52,03476» E Altitude: 100.564 m

GPS/GLONASS Working

7 AKTA Aktau Latitude: 43° 39' 03.33972» N Longitude: 51° 10' 

16.47160» E Altitude: -12.090 m

GPS/GLONASS/COMPASS/

GALILEO/QZSS

Working

8 ATRU2 Atyrau Latitude: 47° 05' 14,65744» N Longitude: 51° 54' 

41,77845E Altitude: -17.855 m

GPS/GLONASS Working

9 URLS Uralsk Latitude: 51° 12' 55,11656» N Longitude: 51° 21' 

53,60423» E Altitude: 41.461 m

GPS/GLONASS Working

10 AKSA Aksay Latitude: 51° 10' 03.93590» N Longitude: 53° 01' 

01.61270» E Altitude: 64.498 m

GPS/GLONASS Working

11 AKTB Aktobe Latitude: 50° 17' 11,35790» N Longitude: 57° 12' 

10,50263» E Altitude: 203.616 m

GPS/GLONASS Working

12 KKSH Kokshetau Latitude: 53° 16' 55,21732» N Longitude: 69° 22' 

58,25710» E Altitude: 218.310 m

GPS/GLONASS Working

13 KSTN Kostanay Latitude: 53° 13' 11,64296» N Longitude: 63° 37' 

21,06674» E Altitude: 165.071 m

GPS/GLONASS Working

14 KRGD Karagandy Latitude: 49° 48' 05,68260» N Longitude: 73° 05' 

25,46637» E Altitude: 525.528 m

GPS/GLONASS Working

15 PVLD Pavlodar Latitude: 52° 17' 04,60152» N Longitude: 76° 56' 

42,33345» E Altitude: 113,260 m

GPS/GLONASS Working

16 EKBS Ekibastuz Latitude: 51°42'42.97447'' N Longitude: 

75°19'59.59637'' E Altitude: 186.831 m

GPS/GLONASS Temporarily 

not working

17 KRCH Kurchatov Latitude: 50° 43' 30.38924» N Longitude: 78° 35' 

49.95628» E Altitude: 130.149 m

GPS/GLONASS Working

18 SMSK Semey Latitude: 50° 24' 10,22716» N Longitude: 80° 13' 

36,72725» E Altitude: 158.855 m

GPS/GLONASS Working

19 USTK Ust-Kamenogorsk Latitude: 49° 58' 26.17766» N Longitude: 82° 34' 

12.52766» E Altitude: 244.847 m

GPS/GLONASS/COMPASS/

GALILEO/QZSS

Working

20 PTRP Petropavlovsk Latitude: 54° 51' 28.73754» N Longitude: 69° 10' 

00.05604» E Altitude: 123.88 m

GPS/GLONASS Working

Fig. 1. GNSS Station International Network Map Fig. 2. GNSS station network diagram of Almaty region

However, the discreteness of the data introduces its specifi city 

in the processing and requires consideration of this factor.

Ignoring discreteness can lead to signifi cant errors. In ad-

dition, a number of discrete mathematics methods have no 

analogues in analytical mathematics.

An important way to analyze discrete sequences is by 

z-transform. The Z-transformation was fi rst introduced by 

P. Laplace in 1779 and repeatedly “discovered” by V. Gurevich 

in 1947 with a change of symbolism to z  k; however, these 

methods have their drawbacks.

Therefore, the researchers were on the path to fi nding a 

transformation devoid of these shortcomings. Currently, in the 
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fi eld of solving spectral analysis problems, the wavelet trans-

form is actively used, which also obeys the Heisenberg uncer-

tainty principle, but has multiscale properties. The wavelet 

transform has good resolution in the time domain and poor 

performance at high frequencies in the time range.

Currently, the most effi  cient method for calculating the 

heights of a quasigeoid is based on the fast Fourier transform. 

Such an approach makes it possible to practically solve the prob-

lem using rigorous formulas of the Molodenskii theory with an 

accuracy of not only zero, but also the fi rst and subsequent ap-

proximations. Finding the spectral components of a discrete 

complex signal directly by the formula of the diff erential Fourier 

transform requires complex multiplications and complex addi-

tions. Since the number of calculations, and, consequently, the 

calculation time is approximately proportional, the number of 

arithmetic operations is very large for large data arrays. There-

fore, fi nding the spectrum in real time, even for modern com-

puter technology, is a diffi  cult task. For this reason, computa-

tional procedures that reduce the number of multiplications and 

additions are of considerable interest. At present, computational 

methods and algorithms are known that can signifi cantly im-

prove the speed of calculations due to the effi  cient use of the 

uniformity property of calculated points along meridians and 

parallels. Under certain conditions, the most productive algo-

rithm is based on the use of the fast Fourier transform. At the 

same time, the cost of computer time is signifi cantly reduced, 

and the calculation results are obtained in the nodes of the regu-

lar grid, which greatly facilitates their further use.

Results and discussion. To apply the general methodology 

for using and compiling a software package and creating an 

algorithm for calculating and studying a quasigeoid model, we 

have proposed a fl owchart that clearly shows the necessary 

data processing levels for creating a quasigeoid model (Fig. 3). 

The exact defi nition of a quasigeoid for solving geodetic prob-

lems is carried out with the recalculation of (ellipsoidal) 

heights directly measured by GPS receivers, then with the in-

put of satellite and ground data with the determination of their 

standard error. Further, all the information is mathematically 

calculated taking into account the data of the gravitational 

anomaly of the earth and through multiscale wavelet expan-

sions and the introduction of corrections, the data is trans-

formed to obtain a preliminary quasigeoid model.

The result of the Fourier transform is the amplitude-fre-

quency spectrum, by which it is possible to determine the 

presence of a certain frequency in the signal under study.

In the case when there is no question of localizing the tem-

poral position of frequencies, the Fourier method gives good 

results. But if it is necessary to determine the time interval for 

the presence of frequency, other methods have to be applied [9].

One of these methods is the generalized Fourier method 

(local Fourier transform). This method consists of the follow-

ing steps:

In the function under study, a “window” is created – the 

time interval, outside which the function f (x)  0.

For this “window”, the Fourier transform is calculated.

The “window” is shifted, and the Fourier transform is also 

calculated for it. By “passing” such a “window” along the en-

tire signal, a certain three-dimensional function is obtained, 

depending on the position of the “window” and frequency.

This approach allows us to determine the presence of any 

frequency in the signal interval. This greatly expands the capa-

bilities of the method compared to the classical Fourier trans-

form, but there are certain disadvantages. According to the 

consequences of the Heisenberg uncertainty principle, in this 

case it is impossible to state the fact that the frequency 0 is 

present in the signal at time t0, it can only be determined that 

the frequency spectrum (1, 2) is present in the interval (t1, 
t2) and the frequency resolution (in time) remains constant re-

gardless of areas of frequencies (times) in which the study is 

performed. Therefore, if, for example, only the high-frequen-

cy component is signifi cant in the signal, then you can in-

crease the resolution only by changing the parameters of the 

method. As a method that does not have such shortcomings, 

the apparatus of wavelet analysis was proposed.

Wavelet bases can be well localized both in frequency and 

in time, in contrast to the Fourier transform, have a lot of di-

verse basic functions whose properties are oriented to solving 

various problems.

Wavelet transform eliminates methodological errors of the 

Fourier transform and gives a more accurate result.

It is believed that the connection of the gravimetric model 

of a quasigeoid with GPS leveling data using second-generation 

wavelets provides the best conversion of GPS ellipsoidal heights 

to normal heights. Since GPS leveling data is irregular in the 

space domain, and the classical wavelet transform is related to 

the Fourier theory, which cannot be applied to irregular data 

sets without fi rst building a grid, the classical wavelet transform 

is not directly applicable. Instead, second-generation wavelets 

and associated lift patterns that do not require regular data in-

tervals are used to combine gravimetric quasigeoid models and 

GPS leveling data, and the results can be cross-checked. Cross-

evaluation means that GPS alignment points are used to evalu-

ate the simulation results when checking the combined surface, 

which is repeated for all points in the dataset. Wavelet transform 

based results are also compared with least squares results. This 

comparison shows that the second generation wavelet method 

can be used instead of the least squares method with similar 

results, but the stationarity assumption for the least squares 

method is not required in the wavelet method. In particular, 

there is no need to (arbitrarily) reorient the data deviations be-

fore applying the Wavelet transform method, as is the case for 

the least squares method. In our opinion, the wavelet transform 

method is better suited for reducing the maximum and mini-

mum diff erences between the combined geoid and cross-check-

ing data to determine the level of GPS alignment.

In general terms, wavelet analysis is based on two main 

functions: the scaling function x and wavelet function x. The 

classic wavelet system contains an endless set of translated and 

scaled versions x and x

2
, 2 (2 ,) ;( ),

j
j

j k x x k j k Z    

2
, 2 (2 ,) .( ),

j
j

j k x x k j k Z    

Fig. 3. The block diagram of the algorithm for constructing a 
quasigeoid model



ISSN 2071-2227, E-ISSN 2223-2362, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2022, № 4 127

Considering function f (x) and mother wavelet (x), the 

function f (x) can be expressed as a linear combination of basis 

functions j, k(x) as

, ,

,

( ) ,( )j k j k
j k

f x a x 

where aj, k is a particular or wavelet coeffi  cient.

This property represents wavelet analysis as a powerful tool 

for processing signals whose spectral content varies in space (or 

time). Essentially high frequency at x00 only aff ects the coeffi  -

cient j, k, corresponding to location and frequency at a point x00.

Reviewing analysis {Vj}j  0 multiple resolution in L2 se-

quence of subspaces is defi ned as

1 2

0

and ,j j j
j

V V V L





 ∪

where V is the resolution of the waves; U is wave propagation 

length.

In addition, there are additional fi elds Wj such that Vj  1  

 Vj  Wj. Therefore, the fi eld Vj with exact resolution can be 

expanded into coarser fi eld and additional fi elds

1

0
0

.
j

j ii
V V W




  

This is called multiscale decomposition.

Fields Vj and Wj stretch in scale j, k and wavelet function 

j, k respectively. Functions of scaling and wavelets at a coarser 

level are calculated by scale functions at a fi ner level using 

some refi nement coeffi  cients hjlk and gjlm such as

 , 1, , 1,and ,j k jlk j k j m glm j l
l l

h g         (1)

or

 j  j  1Hj and j  j  1Gj, (2)

where j and j are line vectors containing functions j, k and 

j, m respectively; Hj and Gj are refi nement matrices.

In biorthogonal cases, various basic functions are used to 

decompose and reconstruct the signal. At the reconstruction 

stage there are used j and j, and their duality, j�  and ,j�  

for decomposition. Any function f (x) can now be expressed by 

wavelet-based functions as

0, 0, , ,

,

( ) ,(( ) )j k j k j k j k
k j k

f x s x d x    

where

0, 0,, ;j k j ks f �

, ,, .j k j kd f �

In this case, the biorthogonal condition in the refi ned ma-

trix and its duality (i. e. fi lters) should look like

* *, 0;j j j jH H I G H � �

* *0, .j j j jH G G H I � �

Considering the two initial pairs of biorthogonal fi lters as 
0 0,j jH G  and 0 0, ,j jH G� �  their properties can be improved with a 

lifting scheme. The lifting diagram indicates that for any op-

erator Pj a new pair of biorthogonal fi lters can be found as

0 0 0( , );j j j j j jH H G P G G  
0 0 0( , ),j j j j j jH H G G H P  � � � � �

which change the role of the original and double fi lters, as well 

as for any operator of Uj

0 0 0,( );j j j j j jH H G G H U  
0 0 0, .j j j j j jH H G U G G  � � � � �

Now we can consider the model

ei  m(xi, yi)  ni,

where ei is from (1) localized in two-dimensional space (xi, yi) 

and these are noise waves in ei. A wavelet transform adapted to 

unevenly distributed two-dimensional data is used to evaluate 

the function m(xi, yi). Some compactly supported scaling 

functions {j, j} identifi ed at the highest level (where J is the 

observation level), a larger scale and wavelet functions j  J  1, 

J  2 are obtained from equation (1) or (2).

The second generation wavelet transform is based on the so-

called uplift pattern and starts with a “lazy wavelet” that reduces 

the signal to even and odd samples. Odd samples are then used to 

predict even ones. Detail j  1 – is the predicted value subtracted 

from the even sample. The parts are then used to update the odd 

samples to keep the average value of the signal unchanged.

Let 0, k  f (x), k  Z source signal. The fi rst approxima-

tion based on the application of a lazy wavelet is

1, k  0, 2, k  Z.

And the wavelet coeffi  cients are expressed as

1, 0,2 1 1, 1, 1

1
( ), .

2
k k k k k Z         

If the signal is correlated, wavelet coeffi  cients (i, j) are small 

and values below a certain threshold can be ignored (described 

below). To maintain an average approximation value (), ap-

proximated values (1, k) must be updated using parts or wavelet 

coeffi  cients. Thus, (11) is modifi ed into the following equation

1, 1, 1, 1 1,

1
( ), .

4
k k k k k Z           �

The above calculations are shown schematically in Fig. 5. 

You can use a higher order scheme to predict odd-indexed values 

from even ones. For example, j, 2k  1 can be predicted based on 

cubic polynomial interpolation through values j, 2k  1, j, 2k, 

j, 2k  2 and j, 2k  4. Thus, there is some interpolation built into the 

second generation wavelet method, but this applies only to the 

processing of wavelet coeffi  cients, and not to the original data.

The second generation reverse wavelet transform is simply 

applied by changing the update and prediction steps [11].

When threshold values are applied to second generation 

wavelets, any coeffi  cients that are less than a given threshold 

value are replaced by zeros.

Finding the optimal threshold value is an important part of 

smoothing or fi ltering.

The following data model (distorted by noise, n) and its 

wavelet transform are considered

y  f  n;

,Wy �

where W�  is direct wavelet transform;  is the vector of wavelet 

coeffi  cients. Coeffi  cients lower than limit values  are replaced 

by zero, and the rest remain unchanged (stable limit value) or 

are compressed by a factor  (fl exible limit value). Applying 

the inverse wavelet transform to threshold coeffi  cients yields 

fi ltered data

y  W.

Wavelets must be localized both in the time and in the fre-

quency domain of the representation. When designing such 

functions, one inevitably has to deal with the uncertainty prin-

ciple that relates the eff ective values of the duration of the func-

tions and the width of their spectrum. The more accurately the 

localization of the temporary position of the function is carried 

out, the wider its spectrum becomes, and vice versa.

Using the MatLAB program, some universal code exam-

ples for data defi nition can be presented.

Script to calculate anomalies in free air- dg_free_air:
%%%% Turekhanova Venera
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clc; clear; format long g
dg = load(‘bouguer.xyz’); %% bouguer gravity
anomaly (here you can specify from which resource information 

is taken)
DEM= load(‘dem.xyz’); %% DEM - resource
Ha = DEM(:,3); %% hights
for i =1:length(dg)
B=0.1119*Ha(i);
dg(i,3)=dg(i,3)+B;
Script for computing anomalies of Molodensky – dgA_

Molodensky:
clc; clear; format long g
DEM = load(‘dem.xyz’); %% DEM – information from the re-

ceived resource
Ha = DEM(:,3); %% hights
dgA = load(‘bouguer.xyz’); %% bouguer gravity anomaly
sinf= sind(DEM(:,2)); %% sin of the latitude Ellipsoid GRS80
a =q; %% semi-major axis [m]
b = q; %% semi-minor axis [m]
e2 = q; %% fi rst eccentricity squared
f_ = q; %% geometrical fl attening
ye = q; %% normal gravity at the equator [m/s^2]
yp = q; %% normal gravity at the poles [m/s^2]
m = q;
// q does not equal const, this is a variable number, depending 

on the data received.
k =(b*yp - a*ye)/(a*ye);
for i = 1: length(dgA)
yq= ye*((1 + k*sinf(i)^2)/sqrt(1 - e2*sinf(i)^2)); yB(i,1) = yq 

-(2*ye/a)*(1+f_+m+(-3*f_+5/2*m)*sinf(i)^2)*Ha(i)+(3*ye/
a^2)*Ha(i)^2;

dgA(:,3)= (dgA(:,3)-yB); %% gravity anomaly of Molodensky [m/
s^2]

dgA(:,1)= DEM(:,2); %% geodetic lat [deg]
dgA(:,2)= DEM(:,1); %% geodetic lon [deg]
The function of converting coordinates from geodesic to geo-

centric - Geodetic_2_geocentric:
function [f_,l,r] = Geodetic_2_geocentric (f,l,h,a,e2)
ellipsoid =[a,sqrt(e2)];
[x, y, z] = geodetic2ecef(f, l, h, ellipsoid);
for i=1:length (f)
f_(i,1) = atan(z(i)/sqrt(x(i)^2+y(i)^2));
r (i,1) = sqrt(x(i)^2+y(i)^2+z(i)^2);
The script for preparing the source matrix for calculations - Sp_

coord_and_gQ:
coord=load(‘KZ_grid.xyz’); %% coordinates of the computation 

points
f=coord(:,1)*pi/180; %% geodetic latitude [rad]
l=coord(:,2)*pi/180; %% geodetic longitude [rad]
h=coord(:,3); %% height
%% Ellipsoid GRS80
a=6378137; %% semi-major axis [m]
b=6356752.3141; %% semi-minor axis [m]
R=6371000; %% mean Earth’s radius [m]
ye=9.7803267715; %% normal gravity at the equator [m/s^2]
yp=9.8321863685; %% normal gravity at the poles [m/s^2]
e2 = 0.006694380023; %% fi rst eccentricity squared
% a. convert geodetic coordinates to geocentric
[f_,l,r] = Geodetic_2_geocentric (f,l,h,a,e2);
SP_gQ=f_; %% geocentric latitude [rad]
SP_gQ(:,2)=l; %% geocentric longitude [rad]
SP_gQ(:,3)=r; %%
% b. normal gravity on the surface of the ellipsoid using
k =(b*yp - a*ye)/(a*ye);
for i = 1:length(f)
sinf= sin(f(i));
SP_gQ(i,4)= ye*((1 + k*sinf^2)/sqrt(1 - e2*sinf^2));
dlmwrite(‘Sp_coord_gQ.xyz’,SP_gQ,’delimiter’, ‘\t’,’precision’, 

‘%.8f’)
Calculation of a preliminary model of quasigeoid heights in the 

MATLAB program
The script for calculating the short-wave component of the pre-

liminary model of the heights of the quasigeoid - Approx_N1:
sn=load(‘Sn_unb.prn’); %% The sn coeffi  cients for the optimum 

modifi cation

CP=load(‘KZ_grid.xyz’); %% The computation points (f,l,h)
GD=load(‘dg_free_air.xyz’); %% The grid gravity database 

(f,l,dgA)
SP=load(‘Sp_coord_gQ.xyz’); %% Spherical coordinates and 

normal gravity of the computation points (f_,l,r,yq)
Mmax=360; %% Upper limit of the GGM
L=Mmax; %% Upper bound of the harmonics to be modifi ed in 

Stokes’s function
Mmax_exp=2000;
pso=3*pi/180;
a=6378137; %% semi-major axis [m]
b=6356752.3141; %% semi-minor axis [m]
R=6371000; %% mean Earth’s radius [m]
[indfp,indlp]= grid_index(CP); %% [rows,colums] in CP grid
[indfi ,indli]= grid_index(GD); %% [rows,colums] in GDATA grid
fp_min= min(CP(:,1))*(pi/180); %% min lat of computation 

points [rad]
lp_min= min(CP(:,2))*(pi/180); %% min lon of computation 

points [rad]
fmin = min(GD(:,1))*(pi/180); %% min lat [rad]
lmin = min(GD(:,2))*(pi/180); %% min lon [rad]
d =(5/60)*(pi/180); %% Block sizes [rad]
%% Computation
p=1;
lim=cos(pso); %% cos of the radius of the truncation cap
N1=CP;
for s = 1:indfp
fp= fp_min+(s-1)*d;
gQ=(SP(p,4)*1000000); %% normal gravity on the surface of the 

ellipsoid
for v = 1:indlp
lp= lp_min+(v-1)*d;
r=1;
SUM=0;
for i=1:indfi 
for j=1:indli
fd(i,j)=fmin+(i-1)*d;
ld(i,j)=lmin+(j-1)*d;
if abs(fp-fd(i,j))<=(pso)
% a. Compute the cos of the spherical distance psi ,t=cos(psi)
t(i,j)=sin(fp)*sin(fd(i,j))+cos(fp)*cos(fd(i,j))*cos(ld(i,j)-lp);
if t(i,j)>=lim & t(i,j)<1
pso2(r)=acos(t(i,j))*(180/pi);
% b. Compute the area Aijof block уij
A(i,j)=2*d*sin(d/2)*cos(fd(i,j));
% c. Compute the original Stokes function S(psi)
S1(i , j )=sqrt(2/(1-t( i , j ) ) )-6*(sqrt((1-t( i , j ) )/2))+1-5*t( i , j )-

3*t(i,j)*log(sqrt((1-t(i,j))/2)+((1-t(i,j))/2));
% d. Compute the second term of the modifi ed Stokes function 

S(psi)
% Compute the Legendre polynomials Pn of degree n
Pn(1,1)=1; Pn(2,1)=t(i,j); sum1=0;
for k=3:(L+1)
q=k-1;
Pn(k,1)=(-(q-1)/q)*Pn((k-2),1)+((2*q-1)/q)*t(i,j)*Pn((k-1),1);
S2(q,1)=((2*q+1)/2)*sn((q-1),1)*Pn(k,1);
sum1=sum1+S2(q,1);
sum2(i,j)=sum1;
SUM=SUM+(S1(i,j)-sum2(i,j))*((GD(r,3)))*A(i,j);
r=r+1;
N1(p,3)=((R/(4*pi*gQ))*(SUM)); %% approximate geoid height [m]
p=p+1
dlmwrite(‘KZGGM_N1.xyz’,N1,’delimiter’, ‘\t’,’precision’, ‘%.8f’)
The function of counting information from a fi le given in the 

format .grd - grid_index:
%%%% Turekhanova Venera
% grid_index - computes how many rows and colums consist 

GRID fi le
% which is given in xyz format
%%%% last updated 2015.04.19
function [rows,colums]=grid_index(Grid_xy)
[n,m]=size(Grid_xy);
rows = 1;
colums= 1;
for i=2:n
if Grid_xy(i,1)~=Grid_xy((i-1),1)
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rows = rows+1;
for i=2:n
if Grid_xy(i,1)==Grid_xy((i-1),1)
if Grid_xy(i,2)~=Grid_xy((i-1),2)
colums= colums+1;
Script for calculating topographic eff ect - dN_Topo:
% dN_Topo - computes the combined topographic eff ect in the 

KTH
approach
CP=load(‘KZ_grid.xyz’); %% the computation points (f,l,h)
SP=load(‘Sp_coord_gQ.xyz’); %% the computation points 

(f_,l,r,yq)
Ha=CP(:,3); %% heights [m]
yq=(SP(:,4)); %% normal gravity on the surface of the earth [m/

s^2]
a=q; %% semi-major axis [m]
b=q; %% semi-minor axis [m]
R=q; %% mean Earth’s radius [m]
ye=q; %% normal gravity at the equator [Gal]
yp=q; %% normal gravity at the poles [Gal]
G=6.673*(10^-11); %% Newtonian gravitational constant [m^3 

* kg^-1* s^-2]
po=2.67*(10^3); %% topographic density at sea level kgr/m^3
dN=CP;
for i=1:length(CP)
if Ha(i)<0
Ha(i)=0;
dN(i,3)=-((2*pi*G*po)/yq(i))*((Ha(i))^2);
dlmwrite(‘dN_topo.xyz’,dN,’delimiter’,
‘\t’,’precision’, ‘%.8f’)

Remark. In this code fragment, program scripts codes are 

found, such as account calculations, or the completion of an 

operation, iteration, and the start of a count, to save space on 

the paper, as well as to make reading easier for human percep-

tion. The main scripts are given in lines that show the calcula-

tion of data related directly to the topic, in connection with this 

the program is shortened, understandable, but when working 

directly in the program of this programming language, it will be 

necessary to fully expand the fragment to the full one with the 

presence of all the functions mentioned above!

Conclusion. To increase the accuracy of determining the 

normal height from the local vertical coordinate system using 

GPS, second-generation wavelets based on the lifting scheme, 

together with a limit coeffi  cient, on the diff erences between 

gravimetric quasigeoid models and discrete GPS-leveling data 

were introduced and implemented.

Unlike the classical wavelet transform, the second genera-

tion wavelet can be applied directly to irregular data sets. The 

second-generation wavelet coeffi  cients were softly fi xed by the 

verifi ed optimal limit value by the global threshold. It is im-

portant to note that this method is applicable to non-station-

ary data. Thus, the removal of the a priori deviation necessary 

for the fusion on the base of least squares method and is not 

required for the second generation wavelet method.

The fl owchart created by us will ensure the correct con-

struction of the quasigeoid model when determining the exact 

coordinates on the ground. And second-generation wavelets 

are another alternative method that can be used to combine 

gravimetric models of quasigeoids/geoids and GPS leveling 

data with specifi c altitude data.

Gratitude. This article is written based on the results of research 
on the topic: “Development of a prototype of radar stations of con-
tinuous radiation of the meter wave range” No. BR109009-0221.
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Застосування теорії вейвлет-перетворення 
в алгоритмі побудови моделі квазігеоїду
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Мета. Дослідити взаємодію геодезичних і нормаль-

них показників висот за даними квазігеоїду, спільне ви-

користання космічних вимірювань і виконаних на по-

верхні Землі за реалізації геодезичних завдань. У цій ро-

боті поставлене завдання створити алгоритм обчислень 

для подальших досліджень моделі квазігеоїду й застосу-

вання моделі у вирішенні геодезичних задач.

Методика. Надійне визначення аномалії висот вима-

гає великої точності, тому була застосована теорія вей-

влет-перетворення в моделюванні з використанням кос-

мічних технологій як альтернатива трудомісткому ніве-

люванню земної поверхні, що характеризує фактичні ко-

ливання від нормалі гравітаційного поля Землі при роз-

рахунку середньоквадратичних відхилень лінії відвісу.

Результати. Складена блок-схема алгоритму розрахун-

ку з використанням програмного комплексу для вирішен-

ня граничної проблеми фізичної геодезії, в якій поверхня 

Землі підлягає сучасним методам космічних вимірів.

Наукова новизна. Використання вейвлет-аналізу для 

обробки інформації за супутниковими даними в геодезії 

покращує результати класифікації знімків, а коефіцієнти 

вейвлет-перетворення можна застосовувати як індикатори 

при розпізнаванні координат точок із високою точністю.

Практична значимість. Застосування теорії вейвлет-

перетворень є потужним математичним інструментом 

для вирішення задач геодезії, стискання та відновлення 

даних, збільшення продуктивності обчислень, кодуван-

ня інформації.

Ключові слова: фізична геодезія, системи координат, 
гравітаційне поле, геоїд, квазігеоїд, гравіметрична висота, 
перетворення координат

The manuscript was submitted 20.03.22.


