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APPLICATION OF THE WAVELET TRANSFORMATION THEORY
IN THE ALGORITHM FOR CONSTRUCTING A QUASIGEOID MODEL

Purpose. To investigate the interaction of geodesic and normal altitude indicators according to quasigeoid data, the joint use of space
measurements and those performed on the Earth’s surface in the implementation of geodetic tasks. In this article, the task is to create a
calculation algorithm for further research on the quasigeoid model and the application of the model in solving geodetic problems.

Methodology. Reliable determination of the height anomaly requires great accuracy, therefore, the theory of wavelet-transfor-
mation was used in the model of the variant of space technologies as an alternative to the laborious leveling of the Earth’s surface,
which characterizes the actual fluctuations from the normal of the Earth’s gravitational field, when calculating the mean square

deviations of the plumb line is an urgent task.

Findings. A block diagram of the calculation algorithm has been compiled using a software package to solve the boundary
problem of physical geodesy, in which the Earth’s surface is subject to modern space measurements.

Originality. The use of wavelet analysis for processing information from satellite data in geodesy improves the results of image
classification, and the coefficients of the wavelet transformation can be used as indicators for recognizing the coordinates of points

with high accuracy.

Practical value. Application of the theory of wavelet transformations as a powerful mathematical tool for solving problems of
geodetic information, data compression and recovery, increasing computing performance, encoding information.
Keywords: physical geodesy, coordinate systems, gravitational field, geoid, quasigeoid, gravimetric height, modeling, coordinate

transformation

Introduction. At the end of the 20" century, a new and im-
portant direction in the theory and technology of signal process-
ing emerged and is successfully developing, which means
“splash” or “small wave”. Graphs with splash functions have
become more frequent. They can be used to decompose signals
instead of harmonic waves when solving problems of physical ge-
odesy. The term wavelet was introduced in their article by Gross-
mann and Morlet in connection with the analysis of the proper-
ties of seismic and acoustic signals. These studies served as the
beginning of an intensive study on wavelets in the next decade by
a number of scientists such as Dobechies, Meyer, Mallat, Farge,
Chui and others. Wavelet theory is a powerful complement to
Fourier analysis and provides a more flexible technique for signal
processing for the entire time period of its observation. The main
advantage of wavelet analysis is its ability to detect highly local-
ized changes in signals, whereas the discrete Fourier transform
does not give this, because its coefficients reflect the behavior of
the signal. Due to the completeness property of this system, it is
possible to restore the process by means of an inverse wavelet
transform to solve physical geodesy problems.

For centuries, for geodetic measurements and determina-
tion of the shapes and sizes of the geoid and quasigeoid, me-
chanical, later optical instruments were used [1].

Fundamental research on the parameters of the Earth con-
tinues to the present time and is relevant in science. On the
main stages of solving this problem, the following can be noted:

- a spheroid close to an ellipsoid of revolution was con-
sidered from the 17" century to the second half of the 79"
century;

- a triaxial ellipsoid, which is a model of a more complex
form of the Earth — a geoid (quasigeoid) from the second half
of the nineteenth century [2];
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- from the 40s of the 20" century to the present, the figure
of the Earth is considered to be a body limited by the physical
surface of the Earth.

Improvement of geodetic information has changed the
quality of measurements, made it possible to develop geodesy,
gravimetry as a science, using space technology [3].

The modernization of space methods allows high-preci-
sion networks to be carried out without complex instrumental
observation with high accuracy subsequent approximations of
the height anomaly.

The application of space measurement methods using
global systems that receive a signal from satellites with a cer-
tain constancy allowed it to be distributed, which confirms the
known surface of the Earth and the geoid, quasigeoid.

The geoid differs from the selected ellipsoid (for example,
GRS 1980) by less than 100 m. Geocentric positions can now
be determined using GPS with an accuracy of better than 1 dm
in a purely geometric way.

In modern studies, it is possible to carry out mathematical
calculations with greater accuracy in the field of pure gravity
anomalies than mixed ones, from the solution of the boundary
problem of physical geodesy, in which the Earth’s surface is
subject to modern cosmic measurements.

Methods for determining the external gravitational field of
the Earth are based on the need to know the external gravita-
tional field of the Earth. This problem can be solved in the form
of a digital model of the average values of gravity anomalies or
in the form of a system of coefficients in the decomposition of
the gravity potential by spherical functions and the solution of
integral equations. In this case, it is possible to increase the ac-
curacy of the final results versatility and theoretical unlimited.

The calculations of the gravitational field using pure grav-
ity anomalies are proved by the integrals performed by
V.V.Brovar and reduce the errors of the height anomaly and
the general components of the plumb deviation by several
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times, relative to mathematical calculations, using mixed
anomalies.

The main point in improving the accuracy of transformant
calculations is mathematical solutions that allow using pure
gravity anomalies, latitude, longitude and geodetic height
functions. The Neumann integral is used to determine the
height anomaly, and the transformed Wening-Meins integral
is used to calculate the components of the plumb deviation.

The modern paradigm based on the use of discrete linear
transformations proves the sequence of the classical series of solu-
tions to the problems of Molodensky, Neumann, Stokes, and the
modified Vening-Meins integral. Modern methods of window
Fourier transforms or discrete Hartley transformations have their
drawbacks, despite the significant advantage of this approach over
classical methods for determining coordinates and elevation.

Currently, an optimal wavelet transform methodology has
been obtained for solving spectral analysis problems, which is
used to calculate integrals of proper Fourier transforms and
discrete Hartley transformations with a slight disadvantage,
which is solved by mathematical wavelet analysis.

Materials and methods. Object of the study. All existing
methods for determining transformants in modern studies on the
gravitational field can be divided into classical and modern. Clas-
sical methods are based on integral formulas that require con-
tinuous gravimetric information, which is almost impossible.

In practice, the initial information is discrete, burdened by
measurement errors and is not known on the entire surface of
the Earth.

The advent of satellites and new opportunities for studying
the gravitational field has significantly expanded the range of
tasks of the theory of the Earth’s figure. In recent decades, very
high-precision global high-resolution geo-potential models
have appeared [4]. This situation became possible due to the
introduction of new measurement methods and techniques.

Due to the indeterminacy of the geoid figure, a quasigeoid
acts as an auxiliary surface when studying the physical surface
of the Earth. Its figure, unlike a geoid, is unambiguously deter-
mined by the measurement results, coincides with the geoid
on the territory of the World Ocean and very close to it on
land, deviating no more than 2 meters in high mountains and
a few centimeters on flat terrain [5].

Global models of the Earth’s gravitational field play an im-
portant role in constructing theories of motion of artificial
Earth satellites, in modeling geodynamic processes and the
internal structure of the Earth, in the study on natural resourc-
es, in oceanography, in marine and aviation navigation, and in
solving defense problems, as well as for highly accurate figure
determination Earth needed to establish a common Earth co-
ordinate system [6].

In the world there are two second generation global naviga-
tion satellite systems (GNSS): GPS (USA) and GLONASS
(Russia). At different stages of deployment, there are two more
global positioning systems — European Galileo and Chinese
BeiDou-2 (international name Compass), as well as two region-
al satellite navigation systems, Indian IRNSS and Japanese
QZSS. GPS is fully operational: as of February 2016, 31 GPS
satellites are operating in orbit [6]. The constellation of
GLONASS satellites currently has 27 satellites. The Galileo sys-
tem is being developed by the European GNSS Agency. The
first Galileo system services for demonstration purposes are ex-
pected to be provided in the coming years. For test tests in 2011—
2012, 4 experienced Galileo system satellites were launched into
orbit. The full deployment of the Chinese GNSS BeiDou/
Compass was planned by 2020. The satellite constellation of this
system is to include 35 navigation satellites (5 geostationary and
30 non-geostationary). The Indian IRNSS system will provide
regional navigation using 7 satellites launched in geosynchro-
nous orbits. The Japanese regional satellite system QZSS will
include a constellation of 3 satellites, expanding GPS capabili-
ties for mobile devices, providing more accurate positioning and
data transmission in the Asia-Pacific region [7].

The accuracy of measuring the signal from the satellite to the
receiver should not be less than (0.25 m + Imm/km). Achieving
such accuracy is possible on the basis of the atomic time scale
and special time support of the satellite system. The satellite uses
atomic clocks, one second of atomic time in metrology is equal
to 9,192,631,770 periods of oscillation, corresponding to the
transition between two ultrathin levels of the cesium atom 133.
The time scales of navigational artificial Earth satellites (NESS)
and receivers are synchronized with the GNSS system time
scale. Each GNSS has its own system time, which is atomic time
and is based on one of the international time scales, as a rule, on
the UTC (Universal Time Coordinated) scale (Mayer-Guerr T.
ITG-Grace03s, 2015). Satellite observations to solve the scien-
tific and practical problems of geodesy require the registration of
time instants with very high accuracy in determining heights.

Global navigation satellite systems occupy a special place
in the space infrastructure, providing continuous access to
navigation services to consumers on the Earth’s surface, in the
air and near-Earth space. The most widespread in the world
are the American and Russian satellite radio navigation systems
GPS (NAVSTAR) and GLONASS (Global Navigation Satel-
lite System).

Table 1 shows a list of STS stations in the Republic of Ka-
zakhstan, this information is not classified, it is publicly available.

Fig. 1 presents the map of the international network of gas
stations; Fig. 2 shows the scheme of the network of gas stations
in Kazakhstan.

Using the GNSS coordinate data, it is possible to obtain ac-
curate information about the transmission of signals to ground
stations, using the wavelet transform of wave data to solve scien-
tific problems of physical geodesy in seismic exploration.

The main type of source information for calculating heights
remains the data of areal gravity surveys. To accurately deter-
mine the geoid heights, it is necessary to know the internal
structure of the Earth. As a result, the approach to determining
the shape of the Earth through the height of the geoid does not
seem sufficiently strict, since the distribution of the mass den-
sity inside the Earth is not known with the necessary accuracy.

At present, a lot of modern methods have been developed
for determining the transformants of the gravitational field, in
which the main efforts are aimed at taking into account the
specifics of real data. Such methods include: variational meth-
od, collocation method, convolution method based on linear
discrete transforms (for example, fast Fourier transform).
Naturally, they all have their advantages and disadvantages.

For example, the collocation method, from a mathematical
point of view, determines functions by selecting an analytical ap-
proximation to a certain number of given linear functionals [9].

This method plays an important role in solving interpolation
problems, with a further generalization of the collocation theory
associated with its application to stochastic objects, when “col-
location” is understood as a generalization of the least squares
method to the case of infinite-dimensional Hilbert spaces [10].

The practical implementation of collocation models is based
on the connection of the theory of Hilbert spaces with the repro-
ducing kernel with the covariance theory of random processes.

The covariance functions (autocovariance and mutual co-
variance) of the random processes under study, as well as the
reproducing core in the functional approach, play a funda-
mental role in collocation models.

The collocation method, as applied to the problems of
physical geodesy, was developed in foreign works [8, 9].

Digital signal processing uses, as a rule, a discrete repre-
sentation of signals, discrete linear transformations, the math-
ematics of discrete transformations originated in the depths of
analog mathematics in the 78" century, mainly in series theo-
ry and their application for approximating functions. But it
became widespread and developed only in the 20" century
with the advent of computers. In principle, in its basic provi-
sions, the mathematical apparatus of discrete transformations
is similar to the transformations of analog signals and systems.
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Satellite coordinates of GNSS base stations in Kazakhstan [8]

Table 1

No Code Locality Position Satellite groups Status

1 ASTN Astana Latitude: 51° 09' 09,46359» N Longitude: 71° 32' GPS/GLONASS/COMPASS/ Working
55,82708» E Altitude: 323.814 m GALILEO/QZSS

2 ALM3 Almaty Latitude: 43° 14" 15,17850» N Longitude: 76° 53' GPS/GLONASS/COMPASS/ Working
05,11209» E Altitude: 835.088 m GALILEO/QZSS

3 TLDK | Taldykorgan Latitude: 45° 01' 15,39073» N Longitude: 78° 23" GPS/GLONASS Working
20,03287» E Altitude: 555.2 m

4 TARZ Taraz Latitude: 42° 54' 25.82496» N Longitude: 71° 22' GPS/GLONASS Working
27.87429» E Altitude: 583.9 m

5 SHMK | Shymkent Latitude: 42° 19' 06.31780» N Longitude: 69° 36' GPS/GLONASS Working
04.16680» E Altitude: 483.421 m

6 KZLR | Kyzylorda Latitude: 44° 48' 56,94865» N Longitude: 65° 32' GPS/GLONASS Working
52,03476» E Altitude: 100.564 m

7 AKTA Aktau Latitude: 43° 39' 03.33972» N Longitude: 51° 10’ GPS/GLONASS/COMPASS/ Working
16.47160» E Altitude: -12.090 m GALILEO/QZSS

8 ATRU2 | Atyrau Latitude: 47° 05' 14,65744» N Longitude: 51° 54' GPS/GLONASS Working
41,77845E Altitude: -17.855 m

9 URLS Uralsk Latitude: 51° 12" 55,11656» N Longitude: 51° 21' GPS/GLONASS Working
53,60423» E Altitude: 41.461 m

10 | AKSA | Aksay Latitude: 51° 10" 03.93590» N Longitude: 53° 01' GPS/GLONASS Working
01.61270» E Altitude: 64.498 m

11 | AKTB Aktobe Latitude: 50° 17' 11,35790» N Longitude: 57° 12' GPS/GLONASS Working
10,50263» E Altitude: 203.616 m

12 | KKSH | Kokshetau Latitude: 53° 16" 55,21732» N Longitude: 69° 22 GPS/GLONASS Working
58,25710» E Altitude: 218.310 m

13 | KSTN Kostanay Latitude: 53° 13' 11,64296» N Longitude: 63° 37' GPS/GLONASS Working
21,06674» E Altitude: 165.071 m

14 | KRGD | Karagandy Latitude: 49° 48' 05,68260» N Longitude: 73° 05' GPS/GLONASS Working
25,46637» E Altitude: 525.528 m

15 | PVLD Pavlodar Latitude: 52° 17' 04,60152» N Longitude: 76° 56' GPS/GLONASS Working
42,33345» E Altitude: 113,260 m

16 | EKBS Ekibastuz Latitude: 51°42'42.97447" N Longitude: GPS/GLONASS Temporarily
75°19'59.59637" E Altitude: 186.831 m not working

17 | KRCH | Kurchatov Latitude: 50° 43' 30.38924» N Longitude: 78° 35' GPS/GLONASS Working
49.95628» E Altitude: 130.149 m

18 | SMSK | Semey Latitude: 50° 24" 10,22716» N Longitude: 80° 13 GPS/GLONASS Working
36,72725» E Altitude: 158.855 m

19 | USTK | Ust-Kamenogorsk | Latitude: 49° 58' 26.17766» N Longitude: 82° 34' GPS/GLONASS/COMPASS/ | Working
12.52766» E Altitude: 244.847 m GALILEO/QZSS

20 | PTRP Petropavlovsk Latitude: 54° 51' 28.73754» N Longitude: 69° 10 GPS/GLONASS Working
00.05604» E Altitude: 123.88 m

Fig. 1. GNSS Station International Network Map

However, the discreteness of the data introduces its specificity
in the processing and requires consideration of this factor.
Ignoring discreteness can lead to significant errors. In ad-
dition, a number of discrete mathematics methods have no
analogues in analytical mathematics.
An important way to analyze discrete sequences is by
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Fig. 2. GNSS station network diagram of Almaty region

z-transform. The Z-transformation was first introduced by
P. Laplace in 1779 and repeatedly “discovered” by V. Gurevich
in 1947 with a change of symbolism to z ~ k; however, these
methods have their drawbacks.

Therefore, the researchers were on the path to finding a
transformation devoid of these shortcomings. Currently, in the
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field of solving spectral analysis problems, the wavelet trans-
form is actively used, which also obeys the Heisenberg uncer-
tainty principle, but has multiscale properties. The wavelet
transform has good resolution in the time domain and poor
performance at high frequencies in the time range.

Currently, the most efficient method for calculating the
heights of a quasigeoid is based on the fast Fourier transform.
Such an approach makes it possible to practically solve the prob-
lem using rigorous formulas of the Molodenskii theory with an
accuracy of not only zero, but also the first and subsequent ap-
proximations. Finding the spectral components of a discrete
complex signal directly by the formula of the differential Fourier
transform requires complex multiplications and complex addi-
tions. Since the number of calculations, and, consequently, the
calculation time is approximately proportional, the number of
arithmetic operations is very large for large data arrays. There-
fore, finding the spectrum in real time, even for modern com-
puter technology, is a difficult task. For this reason, computa-
tional procedures that reduce the number of multiplications and
additions are of considerable interest. At present, computational
methods and algorithms are known that can significantly im-
prove the speed of calculations due to the efficient use of the
uniformity property of calculated points along meridians and
parallels. Under certain conditions, the most productive algo-
rithm is based on the use of the fast Fourier transform. At the
same time, the cost of computer time is significantly reduced,
and the calculation results are obtained in the nodes of the regu-
lar grid, which greatly facilitates their further use.

Results and discussion. To apply the general methodology
for using and compiling a software package and creating an
algorithm for calculating and studying a quasigeoid model, we
have proposed a flowchart that clearly shows the necessary
data processing levels for creating a quasigeoid model (Fig. 3).
The exact definition of a quasigeoid for solving geodetic prob-
lems is carried out with the recalculation of (ellipsoidal)
heights directly measured by GPS receivers, then with the in-
put of satellite and ground data with the determination of their
standard error. Further, all the information is mathematically
calculated taking into account the data of the gravitational
anomaly of the earth and through multiscale wavelet expan-
sions and the introduction of corrections, the data is trans-
formed to obtain a preliminary quasigeoid model.

The result of the Fourier transform is the amplitude-fre-
quency spectrum, by which it is possible to determine the
presence of a certain frequency in the signal under study.

In the case when there is no question of localizing the tem-
poral position of frequencies, the Fourier method gives good
results. But if it is necessary to determine the time interval for
the presence of frequency, other methods have to be applied [9].

One of these methods is the generalized Fourier method
(local Fourier transform). This method consists of the follow-
ing steps:

In the function under study, a “window” is created — the
time interval, outside which the function f(x) = 0.

For this “window”, the Fourier transform is calculated.

The “window” is shifted, and the Fourier transform is also
calculated for it. By “passing” such a “window” along the en-
tire signal, a certain three-dimensional function is obtained,
depending on the position of the “window” and frequency.

This approach allows us to determine the presence of any
frequency in the signal interval. This greatly expands the capa-
bilities of the method compared to the classical Fourier trans-
form, but there are certain disadvantages. According to the
consequences of the Heisenberg uncertainty principle, in this
case it is impossible to state the fact that the frequency o, is
present in the signal at time #,, it can only be determined that
the frequency spectrum (®;, ®,) is present in the interval (¢,
t,) and the frequency resolution (in time) remains constant re-
gardless of areas of frequencies (times) in which the study is
performed. Therefore, if, for example, only the high-frequen-
cy component is significant in the signal, then you can in-

crease the resolution only by changing the parameters of the
method. As a method that does not have such shortcomings,
the apparatus of wavelet analysis was proposed.

Wavelet bases can be well localized both in frequency and
in time, in contrast to the Fourier transform, have a lot of di-
verse basic functions whose properties are oriented to solving
various problems.

Wavelet transform eliminates methodological errors of the
Fourier transform and gives a more accurate result.

It is believed that the connection of the gravimetric model
of a quasigeoid with GPS leveling data using second-generation
wavelets provides the best conversion of GPS ellipsoidal heights
to normal heights. Since GPS leveling data is irregular in the
space domain, and the classical wavelet transform is related to
the Fourier theory, which cannot be applied to irregular data
sets without first building a grid, the classical wavelet transform
is not directly applicable. Instead, second-generation wavelets
and associated lift patterns that do not require regular data in-
tervals are used to combine gravimetric quasigeoid models and
GPS leveling data, and the results can be cross-checked. Cross-
evaluation means that GPS alignment points are used to evalu-
ate the simulation results when checking the combined surface,
which is repeated for all points in the dataset. Wavelet transform
based results are also compared with least squares results. This
comparison shows that the second generation wavelet method
can be used instead of the least squares method with similar
results, but the stationarity assumption for the least squares
method is not required in the wavelet method. In particular,
there is no need to (arbitrarily) reorient the data deviations be-
fore applying the Wavelet transform method, as is the case for
the least squares method. In our opinion, the wavelet transform
method is better suited for reducing the maximum and mini-
mum differences between the combined geoid and cross-check-
ing data to determine the level of GPS alignment.

In general terms, wavelet analysis is based on two main
functions: the scaling function ¢, and wavelet function y,. The
classic wavelet system contains an endless set of translated and
scaled versions ¢, and v,

i
0, (x)=220(2'x-k), jkeZ,

A .
v (0)=22y(Q2/x—k), jkeZ.

Gravimetric data

v ¥
Satelite Ground
¥ ¥

Station data Multiscale wavelet

decomposition
] 7
Earth Gravitational Spatial distribution
Anomalies of GPS leveling stations
v v

An approximate quasigeoid model

v v v v

: Error Analvtical Gross
TOPOgrlaphlc Cotrections continuation validation
corrections corrections metohod

v v v v

Data conversion

1]

Gravimetric model of quasigeoid

Fig. 3. The block diagram of the algorithm for constructing a
quasigeoid model
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Considering function f(x) and mother wavelet y(x), the
function f(x) can be expressed as a linear combination of basis
functions y; ,(x) as

f(x)= zaj,kll/j,k(x)’
Jk

where g, , is a particular or wavelet coefficient.

This property represents wavelet analysis as a powerful tool
for processing signals whose spectral content varies in space (or
time). Essentially high frequency at x0, only affects the coeffi-
cient y; 4, corresponding to location and frequency at a point x0,.

Reviewing analysis {V}}; . , multiple resolution in L, se-
quence of subspaces is defined as

and OVJ =L,

Jj=0

V.cV

J J+l

where V'is the resolution of the waves; U is wave propagation
length.

In addition, there are additional fields W, such that V;, | =

= V; ® W,. Therefore, the field V; with exact resolution can be
expanded into coarser field and additional fields
j-1

/y=he g,

This is called multiscale decomposition.

Fields ¥, and W stretch in scale y; , and wavelet function
@;, respectively. Functions of scaling and wavelets at a coarser
level are calculated by scale functions at a finer level using
some refinement coefficients 4, and gy, such as

Pk :zhﬂk‘Pm,k and Vim :Zgglm(pj-HJ’ (D
7 I

or
0;=¢;, 1, and vy;=¢;,,G, (@)

where ¢; and v; are line vectors containing functions ¢; , and
;. respectively; H; and G; are refinement matrices.

In biorthogonal cases, various basic functions are used to
decompose and reconstruct the signal. At the reconstruction

stage there are used ¢; and y;, and their duality, (T) ; and \} Iz
for decomposition. Any function f(x) can now be expressed by
wavelet-based functions as

f(x)= zsjo,k(pjo,k (x)+ Zd/‘.k"/f,k (),
k Jsk

where
Sjou =04
d; = 04
In this case, the biorthogonal condition in the refined ma-
trix and its duality (i. e. filters) should look like

HH,=1,G;H,=0;
H;G,=0,GiH, =1
Considering the two initial pairs of biorthogonal filters as
H ?,G}) and H ?,GN?, their properties can be improved with a

lifting scheme. The lifting diagram indicates that for any op-
erator P; a new pair of biorthogonal filters can be found as

(H,=H)+G)P,, G,=GY);

(=), G,~G)~ P,

which change the role of the original and double filters, as well
as for any operator of U

(H,=H", G,=G'-~H.);
A,=A'+G, G,=G"

Now we can consider the model

e;=m(x;, y;) +n;,

where ¢; is from (1) localized in two-dimensional space (x;, y;)
and these are noise waves in e;. A wavelet transform adapted to
unevenly distributed two-dimensional data is used to evaluate
the function m(x;, y;). Some compactly supported scaling
functions {¢;, ¢;} identified at the highest level (where J is the
observation level), a larger scale and wavelet functionsj=J—1,
J — 2 are obtained from equation (1) or (2).

The second generation wavelet transform is based on the so-
called uplift pattern and starts with a “lazy wavelet” that reduces
the signal to even and odd samples. Odd samples are then used to
predict even ones. Detail y; | — is the predicted value subtracted
from the even sample. The parts are then used to update the odd
samples to keep the average value of the signal unchanged.

Let & , = f(x), k € Z source signal. The first approxima-
tion based on the application of a lazy wavelet is

)\‘71,/(:;\‘0,27 kel

And the wavelet coefficients are expressed as

1
Yok =Mookst _E(k—l,k FA4), keZ.

If the signal is correlated, wavelet coefficients (y; ;) are small
and values below a certain threshold can be ignored (described
below). To maintain an average approximation value (1), ap-
proximated values (A_; ) must be updated using parts or wavelet
coefficients. Thus, (11) is modified into the following equation

- |
Aig=rix +Z(Y-1,k-1 +Y.4), keZ.

The above calculations are shown schematically in Fig. 5.
You can use a higher order scheme to predict odd-indexed values
from even ones. For example, A; 5, | can be predicted based on
cubic polynomial interpolation through values A; 5 _ 1, A; %,
A 2k+2and A; 5, 4. Thus, there is some interpolation built into the

sécond generation wavelet method, but this applies only to the
processing of wavelet coefficients, and not to the original data.

The second generation reverse wavelet transform is simply
applied by changing the update and prediction steps [11].

When threshold values are applied to second generation
wavelets, any coefficients that are less than a given threshold
value are replaced by zeros.

Finding the optimal threshold value is an important part of
smoothing or filtering.

The following data model (distorted by noise, n) and its
wavelet transform are considered

y=f+n
=Wy,

where W is direct wavelet transform; o is the vector of wavelet
coefficients. Coefficients lower than limit values A are replaced
by zero, and the rest remain unchanged (stable limit value) or
are compressed by a factor A (flexible limit value). Applying
the inverse wavelet transform to threshold coefficients yields
filtered data

».=Wo,.

Wavelets must be localized both in the time and in the fre-
quency domain of the representation. When designing such
functions, one inevitably has to deal with the uncertainty prin-
ciple that relates the effective values of the duration of the func-
tions and the width of their spectrum. The more accurately the
localization of the temporary position of the function is carried
out, the wider its spectrum becomes, and vice versa.

Using the MatLAB program, some universal code exam-
ples for data definition can be presented.

Script to calculate anomalies in free air- dg_free_air:
%%%% Turekhanova Venera
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clc; clear; format long g

dg = load('bouguer.xyz’); %% bouguer gravity

anomaly (here you can specify from which resource information
is taken)

DEM= load('dem.xyz'); %% DEM - resource

Ha = DEM(.3); %% hights

for i =1:length(dg)

B=0.1119*Ha(i);

dg(i,3)=dg(i,3)+B;

Script for computing anomalies of Molodensky - dgA_
Molodensky:

clc; clear; format long g

DEM = load('dem.xyz’); %% DEM - information from the re-
ceived resource

Ha = DEM(.3); %% hights

dgA = load('bouguer.xyz’); %% bouguer gravity anomaly

sinf= sind(DEM(;,2)); %% sin of the latitude Ellipsoid GRS80

a =q; %% semi-major axis [m]

b = g; %% semi-minor axis [m]

e2 = q; %% first eccentricity squared

f_ = q; %% geometrical flattening

ye = q; %% normal gravity at the equator [m/s"2]

yp = g; %% normal gravity at the poles [m/sA2]

m=gq;

// q does not equal const, this is a variable number, depending
on the data received.

k =(b*yp - a*ye)/(a*ye);

fori = 1: length(dgA)

yg= ye*((1 + k*sinf(i)*2)/sqrt(1 - e2*sinf(i)*2)); yB(i,1) = yq
-(2*ye/a)*(1+f_+m+(-3*f_+5/2*m)*sinf(i) 2)*Ha(i) + (3*ye/
a’r2)*Ha(i)*2;

dgA(:,3)= (dgA(.3)-yB); %% gravity anomaly of Molodensky [m/
sA2]

dgA(,1)= DEMC(,2); %% geodetic lat [deg]

dgA(,2)= DEMC(,1); %% geodetic lon [deg]

The function of converting coordinates from geodesic to geo-
centric - Geodetic_2_geocentric:

function [f_l,r] = Geodetic_2_geocentric (f,|,h,a,e2)

ellipsoid =[a,sqrt(e2)];

[x, y, z] = geodetic2ecef(f, |, h, ellipsoid);

for i=1:length (f)

f_(i,1) = atan(z(i)/sqrt(x(i) A 2+y (i) 2));

r(i,1) = sqrt(x( " 2+y(i) " 2+z()A2);

The script for preparing the source matrix for calculations - Sp_
coord_and_gQ:

coord=load('KZ_grid.xyz'); %% coordinates of the computation
points

f=coord(;,1)*pi/180; %% geodetic latitude [rad]

|=coord(:,2)*pi/180; %% geodetic longitude [rad]

h=coord(.3); %% height

%% Ellipsoid GRS80

a=6378137; %% semi-major axis [m]

b=6356752.3141; %% semi-minor axis [m]

R=6371000; %% mean Earth’s radius [m]

ye=9.7803267715; %% normal gravity at the equator [m/s”2]

yp=9.8321863685; %% normal gravity at the poles [m/s"2]

e2 = 0.006694380023; %% first eccentricity squared

% a. convert geodetic coordinates to geocentric

[f_l.r] = Geodetic_2_geocentric (f,|,h,a,e2);

SP_gQ=f_; %% geocentric latitude [rad]

SP_gQ(:,2)=l; %% geocentric longitude [rad]

SP_gQ(:3)=r; %%

% b. normal gravity on the surface of the ellipsoid using

k =(b*yp - a*ye)/(a*ye);

fori = 1:length(f)

sinf= sin(f(i));

SP_gQ(i,4)= ye*((1 + k*sinfA2)/sqrt(1 - e2*sinfA2));

dimwrite('Sp_coord_gQ.xyz',.SP_gQ,'delimiter’, ‘\t','precision’,
'%.8f")

Calculation of a preliminary model of quasigeoid heights in the
MATLAB program

The script for calculating the short-wave component of the pre-
liminary model of the heights of the quasigeoid - Approx_N1:

sn=load('Sn_unb.prn’); %% The sn coefficients for the optimum
modification

CP=load('KZ_grid.xyz'); %% The computation points (f,|,h)

GD=load('dg_free_air.xyz'); %% The grid gravity database
(fl.dgA)

SP=load('Sp_coord_gQxyz'); %% Spherical coordinates and
normal gravity of the computation points (f_l,r,yq)

Mmax=360; %% Upper limit of the GGM

L=Mmax; %% Upper bound of the harmonics to be modified in
Stokes's function

Mmax_exp=2000;

pso=3*pi/180;

a=6378137; %% semi-major axis [m]

b=6356752.3141; %% semi-minor axis [m]

R=6371000; %% mean Earth’s radius [m]

[indfp,indlp]= grid_index(CP); %% [rows,colums] in CP grid

[indfi,indli]= grid_index(GD); %% [rows,colums] in GDATA grid

fp_min="min(CP(;,1))*(pi/180); %% min lat of computation
points [rad]

Ip_min="min(CP(;,2))*(pi/180); %% min lon of computation
points [rad]

fmin = min(GD(;, 1))*(pi/180); %% min lat [rad]

Imin = min(GD(;,2))*(pi/180); %% min lon [rad]

d =(5/60)*(pi/180); %% Block sizes [rad]

%% Computation

p=1;

lim=cos(pso); %% cos of the radius of the truncation cap

N1=CP;

for s = T1iindfp

fp= fp_min+(s-1)*d;

gQ=(SP(p,4)*1000000); %% normal gravity on the surface of the
ellipsoid

forv = T:indlp

Ip= lp_min+(v-1)*d;

r=1;

SUM=0;

for i="T:indfi

for j="T:indli

fd(ij)=fmin+(i-1)*d;

Id(ij)=Imin+(j-1)*d;

if abs(fp-fd(i,j)) <=(pso)

% a. Compute the cos of the spherical distance psi ,t=cos(psi)

t(ij)=sin(fp)*sin(fd(i,j)) +cos(fp)*cos(fd(i ) *cos(Id(i,)-Ip);

if t(ij)>=lim & t(i,j)<1

pso2(r)=acos(t(ij))*(180/pi);

% b. Compute the area Aijof block yij

Alij)=2*d*sin(d/2)*cos(fd(i,j));

% c. Compute the original Stokes function S(psi)

S1(i.j)=sqrt(2/(1-t(i,j)))-6*(sqrt((1-t(i,j))/2)) + 1-5*1(i,j)-
3*t(i,j)*log(sqrt((1-(ij))/2)+((1-t(i)))/2));

% d. Compute the second term of the modified Stokes function
S(psi)

% Compute the Legendre polynomials Pn of degree n

Pn(1,1)=1; Pn(2,1)=t(i,j); sum1=0;

for k=3:(L+1)

q=k-1;

Pn(k,1)=(-(q-1)/6)*Pn((k-2),1)+((2*q-1)/q) (i) *Pn((k-1),1);

S2(q,1)=((2*q+1)/2)*sn((q-1),1)*Pn(k,1);

sumT=sum1+S2(q,1);

sum2(i,j)=sum1;

SUM=SUM+(S1(i,j)-sum2(i,j))*((GD(r,3)))*A(i,j);

r=r+1;

N1(p,3)=((R/(4*pi*gQ))*(SUM)); %% approximate geoid height [m]

p=p+1

dimwrite('KZGGM_N1.xyz',N1,'delimiter’, "\t','precision’, '%.8f")

The function of counting information from a file given in the
format .grd - grid_index:

%%%% Turekhanova Venera

% grid_index - computes how many rows and colums consist
GRID file

% which is given in xyz format

%%%% last updated 2015.04.19

function [rows,colums]=grid_index(Grid_xy)

[n,m]=size(Grid_xy);

rows = 1;

colums= 1;

fori=2:n

if Grid_xy(i,1)~=Grid_xy((i-1),1)
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rows = rows+1;

fori=2:n

if Grid_xy(i,1)==Grid_xy((i-1),1)

if Grid_xy(i,2)~=Grid_xy((i-1),2)

colums= colums+1;

Script for calculating topographic effect - dN_Topo:

% dN_Topo - computes the combined topographic effect in the
KTH

approach

CP=load('KZ_grid.xyz"); %% the computation points (f,|,h)

SP=load('Sp_coord_gQxyz'); %% the computation
(fLlrya)

Ha=CP(;3); %% heights [m]

yq=(SP(;4)); %% normal gravity on the surface of the earth [m/
sA2]

a=q; %% semi-major axis [m]

b=q; %% semi-minor axis [m]

R=q; %% mean Earth'’s radius [m]

ye=q; %% normal gravity at the equator [Gal]

yp=0q; %% normal gravity at the poles [Gal]

G=6.673*(10~-11); %% Newtonian gravitational constant [m”3
* kgh-1* sA-2]

po=2.67*(1073); %% topographic density at sea level kgr/m”3

dN=CP;

for i=1:length(CP)

if Ha(i)<0

Ha(i)=0;

dN(i,3)=-((2*pi*G*po)/yq(i))*((Ha(i) *2);

dimwrite('dN_topo.xyz',dN, delimiter’,

\t','precision’, '%.8f")

points

Remark. In this code fragment, program scripts codes are
found, such as account calculations, or the completion of an
operation, iteration, and the start of a count, to save space on
the paper, as well as to make reading easier for human percep-
tion. The main scripts are given in lines that show the calcula-
tion of data related directly to the topic, in connection with this
the program is shortened, understandable, but when working
directly in the program of this programming language, it will be
necessary to fully expand the fragment to the full one with the
presence of all the functions mentioned above!

Conclusion. To increase the accuracy of determining the
normal height from the local vertical coordinate system using
GPS, second-generation wavelets based on the lifting scheme,
together with a limit coefficient, on the differences between
gravimetric quasigeoid models and discrete GPS-leveling data
were introduced and implemented.

Unlike the classical wavelet transform, the second genera-
tion wavelet can be applied directly to irregular data sets. The
second-generation wavelet coefficients were softly fixed by the
verified optimal limit value by the global threshold. It is im-
portant to note that this method is applicable to non-station-
ary data. Thus, the removal of the a priori deviation necessary
for the fusion on the base of least squares method and is not
required for the second generation wavelet method.

The flowchart created by us will ensure the correct con-
struction of the quasigeoid model when determining the exact
coordinates on the ground. And second-generation wavelets
are another alternative method that can be used to combine
gravimetric models of quasigeoids/geoids and GPS leveling
data with specific altitude data.

Gratitude. This article is written based on the results of research
on the topic: “Development of a prototype of radar stations of con-
tinuous radiation of the meter wave range” No. BR109009-0221.
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3acTocyBaHHs Teopii BeiiB/ieT-nepeTBOPEHHS
B aJropuT™Mi MoOYI0BH MOJeJIi KBa3ireoixy
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Merta. [ocainuTu B3aEMOiI0 Treoae3nYHUX i HOpMab-
HMX MOKa3HUKIB BUCOT 32 JaHUMU KBa3ireoiny, CrijibHe BU-
KOPUCTaHHSI KOCMiYHMX BUMIipIOBaHb i BUKOHAHUX Ha TO-
BepxHi 3emli 3a peajtizallii reoe3MYHUX 3aBIaHb. Y 1iii po-
0OTi MocTaB/leHe 3aBOAHHS CTBOPUTU JITOPUTM OOUYMCIECHBb
IIJI MOJAJIBILIMX JOCHIIXKEHb MOJIe)i KBa3ireoiny i 3acTocy-
BaHHSI MOJIEJIi y BUPILLIEHH] T€0Ae3UYHUX 3a7a4.

Meroauka. HaniliHe BU3HaYeHHST aHOMaJlii BUCOT BUMa-
ra€e BEJIMKOI TOYHOCTi, TOMY OyJjia 3aCTOCOBaHa TEOpisl Beii-
BJIET-TIEPETBOPEHHS B MOJIENIOBAHHI 3 BUKOPUCTAHHSIM KOC-
MiYHUX TEXHOJOTil SIK ajbTepHaTHMBa TPYAOMICTKOMY HiBe-
JIIOBAaHHIO 36MHOI TIOBEPXHi, 1110 XapakTepu3ye (PakTUyHi KO-
JIMBaHHS Bill HOpMaJli rpaBiTalliiiHOro noJjst 3emii Mpu po3-
PaxyHKy CepeIHbOKBaIPaTUUHUX BiIXWUJIEHb JIiHii BilBiCy.

PesyabTaT. CxiianeHa 6J10K-cxeMa airOpUTMY PO3paxyH-
KY 3 BAKOPHICTAaHHSIM ITPOTrPaMHOT0 KOMITJIEKCY /Ul BUPillleH-
HSI TpaHUYHOI TTpo0JIeMHU (hi3MYHOI Teoe3ii, B SKiil MOBEPXHSI
3eMJi miIArae cydyacHUM MeTogaM KOCMiUHUX BUMIpiB.

HaykoBa HoBu3Ha. BukopucTtaHHsl BeiiBieT-aHami3y mjisi
00po0OKM iHGopMallii 3a CYITyTHUKOBMMU JTaHUMU B reoesii
MOKpaIlye pe3yabTaTu Kiacudikanii 3HiMKiB, a KoedillieHTr
BEIBIIET-TIEPETBOPEHHS MOXXHA 3aCTOCOBYBATH SIK iIHIUKATOPY
MpU Po3ITi3HABaHHI KOOPIUHAT TOUOK i3 BUCOKOIO TOYHICTIO.

IIpakTyna 3HauYMMicTh. 3aCTOCYBaHHS Teopii BeilBiIeT-
MEePeTBOPEHb € TOTY>KHUM MAaTeMaTUIHUM iHCTPYMEHTOM
IIJIs1 BUPILIEHHS 3a7a4y reone3ii, CTUCKaHHS Ta BiITHOBJIEHHS
NIaHUX, 30ibLIEHHS MPOMYKTUBHOCTI O0UMCIEHb, KOLYBaH-
H4 iHopMaitii.

KitouoBi cioBa: ghisuuna eeodesis, cucmemu kKoopouunam,
epasimauyiiine none, 2eoio, keaszieeoio, epagimempuuna gucoma,
nepemeopeHHs KoopouHam
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