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FORCEFUL INTERACTION OF THE CASING STRING WITH THE WALLS
OF A CURVILINEAR WELL

Purpose. Developing a method for determining the axial forces and the walls reactions along a casing string, which bend it and 

make it follow a curved wellbore shape.

Methodology. The casing string is represented as a long elastic rod in the curved well. An inhomogeneous system of four dif-

ferential equations is developed to describe the rod’s deformations. It was reduced to a fi rst-order diff erential equation with respect 

to axial force. Its solution was found by the Bernoulli method. The numerical integration of the diff erential equation is applied.

Findings. The axial force distribution along the casing string was found, taking into account the well curvature and the friction, 

as well as the reaction forces of the well walls. A method of the table’s numerical integration of the well’s inclinometric measure-

ments has been developed. The calculating formulas for the reaction forces, axial forces, bending moments and stresses acting in 

the casing pipes in the well deep are obtained.

Originality. The solved problem takes into account the wall’s reaction and the friction forces that create longitudinal bend during the 

column’s movement. The system of diff erential equations of equilibrium was supplemented by Euler’s kinematic equation. The function 

of zenith angle, which is known due to the table of the directional survey data, was taken as the integration variable. The inverse problem 

is solved – all unknown internal forces, also such the external distributed reaction, which causes the column to repeat the well’s shape, 

was been determined by the angular deformations of casing string, which are given by the well’s shape in the inclinometric table.

Practical value. The developed method allows detecting the areas with a signifi cant local increase in the well’s curvature, which 

indicate their obstructed passability. This allows for accurate determination of depth intervals to increase the borehole diameter, 

which is necessary before lowering the column. According to the analysis results, it is possible to determine the parameters of the 

stress-strain state of the casing string, which can be used to predict its working capacity and operating life.

Keywords: casing string, curved well, inclinometric measurement, wall reaction

Introduction. The technology of reliable and safe extrac-

tion of oil and gas from large depths requires the borehole wall 

lining by a string of casing. Modern methods of directional 

and horizontal drilling allow reaching productive layers at a 

depth of 4–6 km with a string length of 5–8 km, while steel 

pipes have a diameter of only 140–168 mm with a wall thick-

ness of 10–12 mm. The main production casing, which con-

nects the well head with deposits of hydrocarbons, must be 

continuous, strong and pressure-tight.

A typical well program includes a vertical section, one or 

more inclined sections (which provide the neces sary large devi-

ation from the wellhead) and a vertical bottom-hole section. The 

straight-line areas are inter connected by transition curved ones, 

which are described by the circle arc of a constant radius. When 

being designed, all wells are usually located in one vertical plane.

During drilling there are deviations from the well design 

profi le, which are continuously corrected by technical and 

technological means. As a result, the area of the real well is not 

exactly straight or circular arc, but contains local distortions 

and deviations from the given shape. To establish the real pro-

fi le of the drilled well, its logging is conducted, during which 

zenith angle  between the tangent to the curved axis of the well 

and the vertical is measured. According to the data obtained, 

an inclinometric table is compiled demonstrating the table de-

pendence of the angle (s) on the coordinate s, which is the 

distance from the earth surface along the curved axis of the well 

to the specifi ed intersection. Measurements are carried out 

from the wellhead to the bottom with a certain pitch s.

The production casing, lowered into the curved well, en-

ters into force interaction with the wells due to the rigidity of 

the pipes. Due to the reaction of the walls, the string bends, 

resembling the profi le of the well. As a result, in the pipes body 

there emerges a complex stress-strain state caused by their 

bending and axial tension, which greatly aff ects the reliability 

and durability of the casing.

Literature review. There is a wide variety of literatu re on 

the mechanical deformation of long casing columns in wells. 

Many researchers have dealt with various aspects of pipe bend-

ing in directional wellbores.

In his monograph “Flexible Bars” (1962), R. Frisch-Fay 

found the solutions of several problems concerning long 

curved bars of uniform cross-section and uniform loaded can-

tilever beams. He also studied the uniformly distributed load-

ing by applying the series for a cantilever with one free edge 

only for vertical and horizontal fi xing. His principle of elastic 

similarity explains how to cope with excessive bends of a fl ex-

ible bar freely horizontal placed on two supports.

A purpose-built fi nite-element model is applied by Mc-

Spadden, Coker, et al. [1] to simulate radial displace ment of a 

casing string constrained within an outer well bore. This repre-

sents a fully stiff -string model wherein the casing is approxi-

mated by general beam elements with 6 degrees of freedom at 

each node to account for all possible physical displacements 

and rotations. Results predicted include defl ection of the cas-

ing centerline from the wellbore centerline, eff ective dogleg 

curvature, ben ding deformation, wall contact forces, and 

bending stress magnifi cation. But in typical casing and tubular 

stress design, the proposed “soft-string” model assumes cas-

ing strings are coincident with the wellbore centerline. The 

known or assumed wellbore curvature is applied directly to the 

casing string. Any eff ect of casing string stiff ness and allowable 

radial displacement within the outer wellbore is ignored. Like-

wise, the impact of bending stress magnifi cation is typically 

ignored along with the eff ects of centralizer placement.

Fei Yin and Deli Gao [2] performed a mechanical analysis 

and design of the casing in a directional well under in-situ 

stresses. They found that the casing in directional well under 
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the action of inelastic surrounding rock displays a complex 

mechanical state. Taking the in-situ stresses and well trajec-

tory into account, the mecha nical model of casing in direc-

tional well under in-situ stresses is established. The mechani-

cal interaction of casing and surrounding rock is simplifi ed to 

a generali zed plane strain problem. To analyze the casing be-

havior, the complicated solution is divided into three simpler 

problems: the elastic mechanics analyses under normal stress, 

torsion stress and shear stress respectively. The analytical ex-

pressions of casing stress and load in direc tional well under 

in-situ stresses and inside hydrostatic pressure are deduced. 

This analytical solution is verifi ed by numerical simulation. 

Furthermore, casing design for the directional well through 

complex formation in an oilfi eld is conducted.

The article [3] is devoted to the methods for calcula ting the 

axial load in the columns of rods, drill pipes, ca sings and tub-

ing strings. Results of the analysis of solu tion of the tasks to 

determine the loss of axial load along the length of diff erent 

types of columns based on their longitudinal and transverse 

strain in directional wells are presented. It is shown that the 

neglect of the magnitudes of transverse loads and shear forces 

leads to an error of calculation of loss of axial load on the fric-

tion along the length of the oil fi eld column at its bottom spi-

rally defor med area. The irrationality of such methods of 

calcu lation for directional and horizontal wells is confi rmed.

Ai Chi, Yu Fahao, et al. [4] proposed a model for calculat-

ing the axial force, and presented a new numeri cal method for 

solving it by considering defl ection and buckling of casing 

string, as well as centralizer and wash over tubing contacting 

with well wall. For estimating whether casing string will be cut 

off  after washover head contacts with casing, it is necessary to 

calculate the axial force. During extracting casing in diff erent 

well sections, based on calculating results, selecting a reason-

able bit weight can prevent casing string from being cut off . As 

the axial force is known, the bending defl ection of wash over 

tubing between two centralizers can be calculated accurately. 

According to calculating results, we can cal culate the proper 

centralizer spacing as the theoretical basis of the reasonable 

design of pipe strings for extrac ting casing in directional well.

The problem about identifi cation of elastic bending defor-

mation of a drill string in curve wells based on the theory of 

fl exible curved rods and the direct inverse problems of drill 

string bending in the channels of curvilinear bore-holes is stat-

ed in the paper [5]. The problem is solved which determines 

the resistance forces and moments during performing ascend-

ing-descending operations in curvilinear bore-holes with tra-

jectories of the second order curve shapes. The sensitivity of 

the resistance forces relative to geometric parameters of the 

bore-hole axial line trajectories is analyzed.

The soft string and stiff  string models are diff erent casing 

string methods that have been used by the oil and gas industry 

to calculate torque and drag. Zhang and Samuel [6] discussed 

the intrinsic diff erence between these two models and pro-

posed a criterion for deter mining which method would deliver 

the most accurate results. The results demonstrate that bore-

hole tortuosity and the shape of the wellbore can signifi cantly 

change the status of the string. A string with a large-size sec-

tion can be soft in a straight wellbore. Likewise, a string with 

small-size section can be stiff  in a wellbore with severe tortuos-

ity. To accurately estimate the drag force, the stiff ness, as well 

as the wellbore shape and its clearance, should be considered. 

Extensive simulations have been performed and are reviewed 

in this paper. The results confi rm that the soft string model is a 

better choice when the string is slimmer, the wellbore is in a 

lower curvature shape, and the clearance is larger. On the con-

trary, the stiff  string model is more useful when the string is 

stronger, the wellbore is in a high curvature shape, and the 

clearance is lower. When to use the models depends on the 

bending shapes of the string in the wellbore. Since neither 

model is equipped to handle all scenarios, combining the two 

methods provides better results.

In the article [7], the authors provided digital modeling of the 

casing process in a directional well. The casing string is subjected 

to great bending stress and high drag in the curved section of di-

rectional well, which may lead to strength failure, seal failure, sta-

bility failure and be hindered. Based on the fi nite element meth-

od, the infl uences of wellbore curvature, friction coeffi  cient, run-

ning velocity and diff erent materials on the casing strings run-

ning, are simulated dynamically in the curved section of direc-

tional well. The numerical results show that the Mises equivalent 

stress on the casing strings increases obviously after being run on 

curved section, and the maximum equivalent stress occurs at the 

bottom of the casing strings when increasing the running velocity. 

With the increase in wellbore curvature, the drag of casing strings 

running increases nonlinearly, but the smoother the wellbore wall 

is, the smaller the friction is. The greater the rigidity of the casing 

is, the greater the drag in the curved section and the more diffi  cult 

it is to casing strings running.

Kryzhanivskyi, et al. [8] applied the long rod theory, which 

receives large nonlinear deformations under the action of its 

weight, to describe the elastic mechanics of a casing in a deep 

curved well. It is proved that the elastic rod deformation under 

the impact of the longitudinal and transverse forces can be cal-

culated by a heterogeneous second order diff erential equation 

with variable coeffi  cients. The solution of the equation of long 

rod angular deformations was found in the form of a linear com-

bination of Airy and Scorer’s functions and in the form of three 

linearly independent polynomial series in the sum with a partial 

answer. This solution was the clue to the formulas of defl ections, 

angular slopes, internal bending moments and transverse forces 

in the column with the arbitrary arrangement of supports and 

boundary conditions in their intersections. But this task did not 

take into account the reaction of the well walls and the friction 

forces acting on the casing string during its movement.

The problem of determining the forces acting on the string 

of pipes in the well when its shape is given is con sidered in 

Yu. Pesliak’s work “Calculation of stresses in columns of pipes 

of oil wells” (1973). To solve it, a system of G. Kirchhoff  equa-

tions describing the spatial deviations of a long elastic rod, 

which has a fi nite ben ding stiff ness, is used, and its solution in 

a vector form is carried out. However, the results in scalar form 

suitable for engineering calculations are obtained only for the 

case of a well section, which is curved along a circular arc of a 

constant radius in one plane, and for a well case, which is pre-

sented by a helix with a constant zenith angle and a constant 

rate of change of the azimu thal angle. In order to determine 

the axial forces and fric tional forces in the case of random de-

viation of the well, numerical integration is applied on an ex-

ample of a well with a constant speed of change of the zenith 

and azimu thal angle to their maximum value of 90°.

The problem of the advance and bending of the string of 

pipes in the deviated borehole is considered in the monograph 

“Calculations of boundary states of pipe columns and pipe-

lines” (1997) by P. Vyslobitskyi. For its solution a geometric ap-

proach is used to study the force interaction of pipes with well 

walls. At the same time, the pipe was graphically inscribed into 

well deviated along the circular arc following several possible, 

according to the author, schemes of placement of contact points 

with its walls, in which reactions and frictional forces may oc-

cur. The acting forces were determined by the equilibrium 

equations of the pipe sections between these contact points and 

the pipe deformation equations, for which the formulas of the 

small deformations of the cantilever beam were unjustifi ably ap-

plied. With the general formulation of the problem of bending 

and casing string drift in the deviated wellbore, a system of dif-

ferential equations was proposed. The system had to express the 

bent state of the string, but it does not contain two equations of 

equilibrium of internal and external forces projections, and 

therefore it is incomplete and cannot be solved.

Thus, the unresolved problem is obtaining a closed system 

of diff erential equations, which describes the deformation of 

the string of pipes in a deviated well under their own weight 
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and the reactions of the walls. The solutions of this problem 

will determine the distribution of axial forces, bending mo-

ments and stresses in the body of the column.

A long casing string in the well behaves like an elastic, sol-

id rod [8], which has suffi  cient bending stiff ness. It is infl u-

enced by a vertical weight j, uniformly distributed along the 

length, which creates variable axial forces in the body of the 

column. The column of initially rectilinear pipes in the curvi-

linear well forcibly receives the geometric shape of its curved 

axis. This is due to the reaction forces of the well walls, which, 

together with the weight, act on the column and bend it.

In the fi rst approximation, we consider that the column 

contacts the well walls along its entire length (we neglect small 

gaps between the wall and the pipe in comparison with large 

geometric deviations of the axis from the rectilinear form). Con-

sequently, along with the distributed weight j, a long elastic rod 

is infl uenced by the reaction of the walls f (s), distributed by its 

length according to a certain law, as a result of which it acquires 

a given form. We assume that the distributed load f (s) is directed 

along the normal to the curvilinear axis of the rod and is positive 

if its projection to the horizontal has a positive direction.

The purpose of the work is to develop a method for deter-

mining the distribution of axial forces and the reactions of the 

walls, which, together with their own weight, act on a casing 

string and make it follow a given wellbore shape. To do this, it 

is necessary to develop and integrate the system of diff erential 

equations of equilibrium of a long elastic rod bent in one plane. 

According to the obtained results, it is necessary to fi nd ex-

pressions of force parameters that describe the stress-deformed 

state of the casing in a deviated well.

The method to obtaining the main system of diff e rential 
equations and its fi rst integral. The analysis showed that large 

elastic deformations of the long rod of the unit-value stiff ness 

can be considered for the bend, without losing the universality 

of the solution [8]. At the same time, the bending moment is 

numerically equal to the curvature of the rod, and the current 

force factors diff er in size from the estimated ones by the factor 

EJ (E is the elastic modulus of the material, J is the moment of 

inertia of the cross-section of the rod).

Let us consider the arc element – the segment of the curved 

axis of the rod with length ds, at the beginning of which the 

tangent line is inclined to the vertical under zenith angle  (Fig. 

1). In this section, the internal axial t and transverse u forces as 

well as bending moment q are applied. In the fi nal crosscut of 

the element, which recei ved an increase in zenith angle d, the 

same forces are applied, but with increments dt, du, dq corre-

spondingly, whose direction must balance the initial ones.

The element is also aff ected by external forces: its weight 

j  ds, the reaction of the wall f  ds and the friction force kt  f  ds, 

directed along the axis of the string against its motion, where kt 

is the coeffi  cient of friction. In the equations of equilibrium, 

discussed below, the sign of friction corresponds to the descent 

of the string in the well. For the case of lifting a column in the 

equations and their solutions, the coeffi  cient of friction should 

be taken with the opposite sign.

The following system of diff erential equations is obtained 

from the equilibrium conditions of the bent rod element (Fig. 1)

 sin 0;
du dt j f
ds ds


      (1)

 cos 0;t
dt du j k f
ds ds


      (2)

 0.
dq u
ds

   (3)

Diff erential (1) was found from the force projections upon 

the normal, and (2) – upon the tangent (Fig. 1). Equation (3) 

is based on the equilib rium of boundary moments and mo-

ments of edge forces.

A similar system describing the bending deformation of a 

long elastic rod in one plane was obtained in the work by 

R. Frisch-Fay. However, it did not take into account the reac-

tion of the wall and friction, and was incomplete. In order for 

the system to have a solution, the fourth equation is required, 

which is the kinematic Euler equation. It establishes the con-

nection between the angular deformation of the rod and its 

curvature q (bending moment)

 
1

,
dq
ds R
     (4)

where R is the local radius of curvature; the dot denotes the 

derivative of s.

Due to this, the system of diff erential equations becomes 

closed and has the only solution.

Thus, the deformations of casing string, bent due to the de-

viation of the borehole, are described by a non-uniform system 

of four diff erential (1–4). As we see, this system contains three 

unknown functions t, u and q (which are internal force factors) 

and an unknown function of the distributed reaction f (which is 

an external load). The function  is known due to the inclino-

metric table of well measurement. It is necessary to solve the 

inverse problem – having the known load j and the defor-

mations  given by the shape of the well, it is necessary to deter-

mine the unknown internal distributed forces t, u, q and such an 

external load function f, which creates a given shape of the rod.

Let us substitute (3 and 4) into (1 and 2) and reduce the 

system (1–4) to two equations

 t      j sin   f; (5)

 t      j cos   kt  f. (6)

The system of diff erential (5–6), where the zenith function 

 is known, contains two unknown functions t and f. Accord-

ing to (5), we have

 f  j sin   t    . (7)

Thus, the problem of determining the distributed reaction 

of walls f requires the fi nding of the axial force t. To do this, let 

us multiply (6) by kT, add it to (5) to exclude the function f 
from the system (5–6)

 t  kt  t  kt      kt j sin   j cos . (8)

The resulting diff erential fi rst-order equation is linear, in-

homogeneous and, in general, with variable coeffi  cients. We 

will study and solve the basic diff erential equation (8).

Application of the Bernoulli method to integrate the diff er-
ential equation of axial force. Let us mark the right part (8) in 

the following way

   kt   kt  j sin   j cos . (9)

Integration (8) is carried out provided that the coeffi  cient 

of resistance of the string motion within a single area is con-

stant: kt  const, 0  kt  1. Let us solve the Cauchy problem 

provided that in the established intersection with the coordi-

Fig. 1. The scheme of loading of an elastic bent element of a 
casing string in a curvilinear well
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nate s  L, where z  Z,    and axial force t(L)  tZ is applied.

The general solution of the inhomogeneous equation (8) is 

sought by the Bernoulli method [9] in the form of a product of 

two functions: t  v  w; its substitution in (8) gives

v  w  v  w  kt  v  w  ;

 (v  kt  v)  w  v  w  . (10)

Since we are looking for one function t, then one of the 

two product functions can be arbitrary. Let us choose v so that 

it satisfi es the homogeneous equation, formed from the ex-

pression in brackets (10) and solution of which we can fi nd by 

separating the variables [9]

 v  kt  v  0; (11)

 
( ).tkv e   (12)

Now let us substitute expressions (9, 11 and 12) into (10) 

and integrate the resulting diff erential equation

 

( )

( sin cos ) ,

t t t

t

s s
k k k

t
L L

s
k

t
L

e w c k e ds e ds

j e k ds

  



        

  

 


 (13)

where с is the constant of integration.

The fi rst of the integrals contained in (13) is found by inte-

grating the parts

( ) ,t t t t t

s s s
k k k k k

t
L L L

e ds e d e e k e ds    
                

where   () is the value of the derived function in the 

intersection, where   .

Now the fi rst and second integrals of (13) can be combined

( ) 2( ) (1 ) .

t t

t t t

s s
k k

t
L L

s
k k k

t t
L

k e ds e ds

k e e k e ds

 

  


      

         

 



The second of integrals (13) is also integrated by parts

 

2

( ) 2 2 3

1
( )

2

.
2 2

t t

t
t t

s s
k k

L L
sk

k kt

L

e ds e d

ke e e ds

 


 



      

      

 



Substituting the resulting integrals in (13), we obtain a 

function w

  

( )

2
( ) 2 2 3

( )

1

2

( sin cos ) .

t

t t

t

t

t

k
t

s
k kt t

k
L

s
k

tk
L

w k e

k k
e e ds

e

j e k ds c
e




 
 




    

           
 

   





 (14)

The product of functions (12 and 14) gives a function t

 
 

( ) ( )

2
( )2 2 3

( )

1

2

( sin cos ) .

t t

t t

t

t t

t

k k
t

s
k kt t

k
L

s
k k

tk
L

t e w k e

k k
e e ds

e

j e k ds ce
e

 


 
 

 


      

            
 

   




Under the conditions of the Cauchy problem, we get c  tZ. 

Consequently, the distribution of the axial force in the body of 

the column, taking into account the deviation of the well and 

friction on its walls, has the form

 

 
 

( )

2
( )2 2 3

( )

1

2

( sin cos ) .

t

t t

t

t t

t

k
t
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In the expression (15) the direction of integration is 

changed. Transformations helped to get rid of the second and 

third derivatives under integrals. The last integral (15) cannot 

be simplifi ed in general case. It can be found in quadratures 

only for the case of a constant radius of the well curvature 

when ds  Rd [10].

Knowing the axial force t (15), one can fi nd a distributed 

reaction of the well walls by expression (7).

Method of numerical diff erentiation and integra tion of incli-
nometric table. According to the results of directional survey, 

that is the table of zenith angles , measured with the interval 

s, a real well profi le is constructed. At fi rst, they determine 

depth gain z, horizontal displacement x from the vertical 

axis of the well in the directional drilling, lateral deviation y 

from the directional orientation

zn  sn cos n;

xn  sn sin n cos(An  Az);

yn  sn sin n sin(An  Az),

where n is the sequence number of measurement; sn  sn  sn  1 

is coordinate gain s of intersection along the deviated wellbore; 

An is measured magnetic azimuth; Az is azimuth of directional 

orientation.

According to the calculated gains, absolute values of depth 

Zn, horizontal displacement Xn and lateral deviation Yn as the 

sum of gains are determined

1 1 1

; ; ,
n n n

n i n i n i
i i i

Z z X x Y y
  
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by which they build a vertical profi le and a horizontal well plan.

For a numerical diff erentiation of a table-defi ned function 

, a central scheme [11] is used
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where the letter d denotes numerical diff erentiation.

According to (16), the values of the second d2 and the 

third d3 derivatives can be obtained correspondingly

1 1

1 1

2 ;n n
n

n n

d d
d

s s
 

 

  
 



1 1

1 1

2 2
3 .n n

n
n n

d d
d

s s
 

 

  
 



Applying the (7), the true value of Fn of the distributed re-

action of the well wall in the nth section is found by the formula

 Fn  EJfn  EJj sin n  Tn  dn  EJ  d3n, (17)

where Tn  EJtn is the actual value of the axial force, which 

must fi rst be found, defi ning the integrals in the (15).

The numerical integration of tabulated functions is carried 

out according to the trapezoidal rule [11]. For this, the interval 

of integration [s, L] is divided into elementary intervals; on 

each of them, they fi nd the area of the trapezoid, constructed 

on the ordinates of the function at the edges of the interval. 

The value of an integral is equal to the sum of the squares of all 

elementary trapezoids.

For an inclinometric table, for an elementary interval, it is 

natural to choose the measurement interval s, which makes it 

possible to fi nd the values of the integral functions for the for-

mula (15) at the edges of each interval.
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As formula (15) shows, to fi nd the value of the axial force t in 

the current section s, it is necessary to know its value tZ at the end 

of the integration interval. The only cross section of the casing, 

where the axial force is known in advance, is its free end (casing 

shoe) – here it is tZ  0. Proceeding from this, the following meth-

od of numerical analysis of inclinometric table is developed.

For the integration interval, we choose the measurement in-

terval s. Then in the current section sn, which is the beginning of 

the interval and where you need to fi nd the axial force tn, one can 

determine all the values of func tions and derivatives necessary for 

(15). The same values at the end of the interval (where s  L and 

  ) are found by the data of the next (n  1)th measurement.

At the same time, for formula (15) the integral value is 

equal to the trapezoidal area constructed on the ordinates of 

the integrands determined according to the nth and (n  1)th 

measurements. The value of the trapezoidal area is found as 

the product of the interval s to the arithmetic mean of the 

specifi ed ordinates.

Thus, transforming formula (15) and integrals in it accord-

ing to the proposed method, the real value of the axial force Tn 

at each step of integration is determined by the formula
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 (18)

Beginning with the last Nth measurement for which the 

value TN  EJtZ  0 is known, according to (18), we fi nd the 

previous value TN  1, by which we get value TN  2, and so on. 

The determination of the distribution of the axial forces in the 

body of the pipe occurs from the bot tom upwards along the 

casing from its free end, with the preset value of the axial force 

for the last measurement.

The design of the casing column is described by setting the 

diameters Dn of the pipes and the thickness n of their walls at 

each depth interval according to the well program; conse-

quently, we determine the area Sn of the crosscut of the pipes 

and its moments of inertia Jn.

At each depth interval, we set the mass mt of one linear 

meter of the casing pipe, the mass mm of the collar, the length 

lm of the pipes (the distance between the coup lings), the mass 

mc of the centralizer and the distance lc between them. Let us 

determine the combined mass mn of the linear meter of the 

casing column by the formula

.m c
n t

m c

m m
m m

l l
  

The coeffi  cients of friction are given for each interval of 

bedding of rocks in accordance with the borehole log. We also 

set the values of the densities n of the drilling fl uid, which is in 

the well after it was washed out before the casing is lowered. 

The combined weight jn of the linear casing meter is calculated 

by the formula

9.8( )
,n n

n
n

m
j

EJ
 

 


where  is the density of the casing material; mn/ is the area 

of its combined cross-section.

Along the wellbore, we fi nd the values of the axial forces 

and the reactions of the wall by the (18 and 17). The values of 

the local radii Rn of the curvature and the internal bending 

moments Mn are calculated by the formulas

 Rn  1/dn; Mn  EJqn  EJdn. (19)

To determine the strength of the casing, we must deter-

mine the local maximal values of internal stresses in the body 

of the pipes by the sum of stresses from tension and bending

 max .
2 2

nn n n n

n n n n

MT D T ED
S J S R

      (20)

The value of the bending moment and the radius of curva-

ture is taken modulo to obtain the maximum stress value in the 

pipe, regardless of the direction of its bend and the location of 

the stretched fi bers.

The developed numerical analysis program was tested in a 

test mode by comparing with the results of analytically found 

formulas of the axial force t and reaction of walls f for a well 

section of a constant radius of curvature, taking into account 

frictional forces [10]. At the same time the error of program 

calculations was no more than 0.02 %.

Results and discussion. Approbation of the develo ped meth-

odology is carried out according to the data of the operating well. 

At fi rst the analysis of its program was carried out using theoreti-

cal solutions. For this pur pose, in the areas from which the real 

program is made, the following parameters are calculated ac-

cording to the formulas obtained analytically in [10]: the distri-

bution of axial forces in the initial and fi nal vertical sections; the 

distribution of axial forces and the reactions of the walls on the 

radius of zenith angle buildup, on two inclined rectilinear sec-

tions and two radius sections of the zenith angle decline. The 

values of the radii of curvature and bending moments are calcu-

lated according to the (19), the maximum stresses – according to 

(20). The results of calculations are presented in Fig. 2.

The theoretical analysis of the well design showed that the 

axial force in the body of the column with increasing depth 

decreases piecewise linearly on straight sections (vertical and 

inclined), as well as on the curved ones along a circular arc. 

The same nature has the distribution of tensile stresses in the 

body of the pipes. At the same time, a discontinuous change in 

the stresses of two types was detected. The fi rst type (on the 

marks of 1200 and 3700 m) is caused by a change in the stan-

dard size of the casing pipes. The second type of stress jumping 

is typical for the column curving intervals (with a constant ra-

dius of curvature according to the program) and is determined 

by the value of the bending moment created by the curvature. 

In addition, jumps of well wall reactions in the regions of the 

conjugation of its rectilinear and curved areas occur.

The jump-like nature of the change in the stresses and re-

actions of the walls is due to the fact that in the transition from 

rectilinear areas of the design well to those curved along a cir-

cular arc there is no geometric break of its axis, since the tan-

gents coincide in the transitional section. However, the jump 

in the bending moment occurs, which is on the arc and is pro-

portional to the curvature, but is absent on a straight line.

This is a consequence of the idealization of the project, in 

the fi rst place, through the description of the distorted areas by 

the arc of the ideal circle. In a real well, whose diameter is 

slightly larger than the diameter of the pipes, the edges of the 

column at the conjugated sites due to the elasticity of the pipes 

receive variable curvatures, which acquire values from R1 on 

the arc section to 0 on a straight line and vice versa.

A positive well reaction indicates that the casing column 

rests on its lower wall; this is observed on inclined rectilinear 

and in the areas of the decline of the zenith angle. The negative 

reaction of the walls shows that the column rests on the upper 

wall of the well due to the forces of elasticity of the initially 

rectilinear casing; this is manifested in the area of the zenith 

angle buildup. On the inclined sections, the reaction of the 

well coincides with the reaction of the inclined plane. These 

results are consistent with the conclusions of [10].
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The numerical analysis program also worked out the pro-

gram of the operating well, given in the form of inclinometric 

table; the results of this are presented in Fig. 2 with blue lines. 

Patterns of the distribution of axial forces, the reactions of the 

well walls, bending moments, maximum stresses in the body of 

the column, obtained by numerical analysis and calculated by 

analytical formulas [10], qualitatively coincide completely. 

The error of the developed numerical analysis method is due 

to the inaccuracy of numerical diff erentiation and integration 

and depends fi rst of all on the choice of the value of the inter-

val [11]. The diff erence between the numerical and theoretical 

calculations of the design maximum stresses in the body of the 

pipes is 0.01–0.03 % along the entire column.

In addition, the developed program of numerical analy-

sis worked out inclinometric table of data of fi eld measure-

ments of the actual well number 1; the results of this are pre-

sented in Fig. 2 with red lines. This allowed revealing the 

following features of the behavior of the casing in a real 

drilled borehole.

The actual deviation of the real well profi le from the design 

one is shown through a graph of bending moments (Fig. 2, d ), 

which can also be considered as a graph for changing the actual 

curvature of the well, since they are proportional according to 

(19). As you can see, the axis of an actual drilled well signifi -

cantly deviates from the design profi le (rectilinear or radius 

one). This is evidenced by the continuous change in bending 

moments by both magnitude and direction, which is caused by 

a change in the actual values of the local curvature of the well. 

This is due to the impact of a large number of technical, tech-

nological and geological factors on the drilling process.

Under these conditions, a casing column, trying to pre-

serve its initially rectilinear form, at the expense of the forces 

of elasticity rests on opposite walls of a sto chastically curved 

well, causing variables in magnitude and direction of reaction 

a b

c d e

Fig. 2. Wells profi le (a), graphs of axial forces T (b), walls reactions F (c), bending moments M (d) and normal tensions  (e) in column 
combined at depth intervals:
blue line – according to the well project; red line – according to inclinometric measurements
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(Fig. 2, c). By comparing Figs. 2, c, d, we can see that the mag-

nitude and change in the local curvature of the well causes a 

proportional value and a change in the reaction of its wall. The 

reaction of the wall is also proportional to the bending rigidity 

of the casing. Accordingly, the internal bending moment and 

bending stress in the body of the pipe also change.

The largest jump in the values of the reaction of the actual 

well walls, the bending moment and the maximum stresses in the 

body of the casing is observed at a mark of 1,440 m, where the 

actual deviation of the well and zenith angle buildup (as opposed 

to the design of 1,350 m) begin. Along with this, the results of 

numerical analysis of an actual well made it possible to detect its 

areas with a signifi cant increase in the curvature and the reaction 

of the wall. These are areas where the forced deviation of the well 

(zenith angle buildup and decline) occurred. In addition, in the 

areas of stabilization of the zenith angle, one can also fi nd a local 

increase in the curvature and the reaction of the wall.

Numerical analysis of the stresses shows that for this well pro-

fi le the tensile stress of the column is dominant (Fig. 2, e). Local 

stresses are of fl uctuating nature and are related to the increase of 

local curvature of the well and bending moment in the column.

Conclusions. The stress-strain state of the casing in the 

curved well can be determined by the non-uniform system of 

diff erential equations, which describes the bending of a long 

elastic rod under the action of distributed forces of its own 

weight, the reaction of supports and friction. Having the shape 

of the well with a known function of the zenith angle, we can 

fi nd the solutions of the system in the form of functions of the 

distribution of axial forces and bending moments in the body 

of the column, as well as the reactions of the walls, which lead 

the column to the actual well profi le.

Parameters of the stress-strain state of the casing in an ac-

tually drilled well can be determined by the developed meth-

ods of numerical integration of the data of inclinometric mea-

surements of the well and the software of their numerical 

analysis. This allows us to identify areas of local increase in 

curvature and stresses of the casing pipes in the curved well.

The developed method of numerical analysis of the well 

allows detecting the areas with a signifi cant local increase in 

the curvature, which indicates their obstructed passability. It 

allows one to accurately determine the depth intervals for in-

creasing the well diameter. This must be done before lowering 

the casing string. In addition, according to the results of the 

analysis, it is possible to determine the parameters of the 

stress-strain state of the casing, which can be used to predict its 

working capacity and operating life in the curved well.
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Силова взаємодія обсадної колони 
зі стінками криволінійної свердловини
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Мета. Розроблення методики визначення осьових 

зусиль і реакцій стінок уздовж обсадної колони, що зги-

нають її та надають їй вигнуту форму стовбура свердло-

вини.

Методика. Обсадна колона представлена як дов гий 

пружний стрижень у криволінійній свердловині. Для 

опису деформацій стрижня розроблена неодно рідна сис-

тема з чотирьох диференціальних рівнянь. Вона зведена 

до диференціального рівняння першого порядку віднос-

но осьової сили. Його розв’язок був знайдений методом 

Бернуллі. Застосовано чисельне інтегрування диферен-

ціального рівняння.

Результати. Знайдено розподіл осьових зусиль уздовж 

обсадної колони з урахуванням кривизни свердловини й 

тертя, а також сил реакції стінок сверд ловини. Розробле-

на методика чисельного інтегруван ня таблиці інкліноме-

тричних вимірювань свердлови ни. Отримані розрахун-

кові формули для сил реакції, осьових сил, згинальних 

моментів і напружень, що діють в обсадних трубах у гли-

бині свердловини.

Наукова новизна. Розв’язана задача враховує реак-

цію стінок і сили тертя, що створюють поз довжній 

згин під час руху колони. Система диферен ціальних 

рівнянь рівноваги доповнена кінематичним рівнянням 

Ейлера. За змінну інтегрування прийнято функцію зе-

нітного кута, що є відомою завдяки таб лиці даних ін-

клінометрії. Розв’язана обернена задача – за кутовими 

деформаціями обсадної колони, що задані формою 

свердловини в інклінометричній таб лиці, визначені 

всі невідомі внутрішні сили, а також зовнішня розпо-

ділена реакція, яка змушує колону повторювати форму 

свердловини.

Практична значимість. Розроблена методика до зволяє 

виявити ділянки зі значним локальним збіль шенням 

кривизни свердловини, що свідчать про їх утруднену 

прохідність. Це дає змогу точно визначити інтервали гли-

бин для розширення діаметра свердло вини, що є необ-

хідним перед опусканням колони. За результатами аналі-

зу можна визначити параметри напружено-деформова-

ного стану обсадної колони, за якими прогнозувати її 

працездатність і ресурс роботи.

Ключові слова: обсадна колона, криволінійна свердлови-
на, інклінометричні вимірювання, реакція стінки
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