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Purpose. Developing a method for determining the axial forces and the walls reactions along a casing string, which bend it and
make it follow a curved wellbore shape.

Methodology. The casing string is represented as a long elastic rod in the curved well. An inhomogeneous system of four dif-
ferential equations is developed to describe the rod’s deformations. It was reduced to a first-order differential equation with respect
to axial force. Its solution was found by the Bernoulli method. The numerical integration of the differential equation is applied.

Findings. The axial force distribution along the casing string was found, taking into account the well curvature and the friction,
as well as the reaction forces of the well walls. A method of the table’s numerical integration of the well’s inclinometric measure-
ments has been developed. The calculating formulas for the reaction forces, axial forces, bending moments and stresses acting in
the casing pipes in the well deep are obtained.

Originality. The solved problem takes into account the wall’s reaction and the friction forces that create longitudinal bend during the
column’s movement. The system of differential equations of equilibrium was supplemented by Euler’s kinematic equation. The function
of zenith angle, which is known due to the table of the directional survey data, was taken as the integration variable. The inverse problem
is solved — all unknown internal forces, also such the external distributed reaction, which causes the column to repeat the well’s shape,
was been determined by the angular deformations of casing string, which are given by the well’s shape in the inclinometric table.

Practical value. The developed method allows detecting the areas with a significant local increase in the well’s curvature, which
indicate their obstructed passability. This allows for accurate determination of depth intervals to increase the borehole diameter,
which is necessary before lowering the column. According to the analysis results, it is possible to determine the parameters of the

stress-strain state of the casing string, which can be used to predict its working capacity and operating life.
Keywords: casing string, curved well, inclinometric measurement, wall reaction

Introduction. The technology of reliable and safe extrac-
tion of oil and gas from large depths requires the borehole wall
lining by a string of casing. Modern methods of directional
and horizontal drilling allow reaching productive layers at a
depth of 4—6 km with a string length of 5—8 km, while steel
pipes have a diameter of only 140—168 mm with a wall thick-
ness of 10—12 mm. The main production casing, which con-
nects the wellhead with deposits of hydrocarbons, must be
continuous, strong and pressure-tight.

A typical well program includes a vertical section, one or
more inclined sections (which provide the necessary large devi-
ation from the wellhead) and a vertical bottom-hole section. The
straight-line areas are interconnected by transition curved ones,
which are described by the circle arc of a constant radius. When
being designed, all wells are usually located in one vertical plane.

During drilling there are deviations from the well design
profile, which are continuously corrected by technical and
technological means. As a result, the area of the real well is not
exactly straight or circular arc, but contains local distortions
and deviations from the given shape. To establish the real pro-
file of the drilled well, its logging is conducted, during which
zenith angle 3 between the tangent to the curved axis of the well
and the vertical is measured. According to the data obtained,
an inclinometric table is compiled demonstrating the table de-
pendence of the angle 3(s) on the coordinate s, which is the
distance from the earth surface along the curved axis of the well
to the specified intersection. Measurements are carried out
from the wellhead to the bottom with a certain pitch As.

The production casing, lowered into the curved well, en-
ters into force interaction with the wells due to the rigidity of
the pipes. Due to the reaction of the walls, the string bends,
resembling the profile of the well. As a result, in the pipes body
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there emerges a complex stress-strain state caused by their
bending and axial tension, which greatly affects the reliability
and durability of the casing.

Literature review. There is a wide variety of literature on
the mechanical deformation of long casing columns in wells.
Many researchers have dealt with various aspects of pipe bend-
ing in directional wellbores.

In his monograph “Flexible Bars” (1962), R. Frisch-Fay
found the solutions of several problems concerning long
curved bars of uniform cross-section and uniform loaded can-
tilever beams. He also studied the uniformly distributed load-
ing by applying the series for a cantilever with one free edge
only for vertical and horizontal fixing. His principle of elastic
similarity explains how to cope with excessive bends of a flex-
ible bar freely horizontal placed on two supports.

A purpose-built finite-element model is applied by Mc-
Spadden, Coker, et al. [1] to simulate radial displacement of a
casing string constrained within an outer wellbore. This repre-
sents a fully stiff-string model wherein the casing is approxi-
mated by general beam elements with 6 degrees of freedom at
each node to account for all possible physical displacements
and rotations. Results predicted include deflection of the cas-
ing centerline from the wellbore centerline, effective dogleg
curvature, bending deformation, wall contact forces, and
bending stress magnification. But in typical casing and tubular
stress design, the proposed “soft-string” model assumes cas-
ing strings are coincident with the wellbore centerline. The
known or assumed wellbore curvature is applied directly to the
casing string. Any effect of casing string stiffness and allowable
radial displacement within the outer wellbore is ignored. Like-
wise, the impact of bending stress magnification is typically
ignored along with the effects of centralizer placement.

Fei Yin and Deli Gao [2] performed a mechanical analysis
and design of the casing in a directional well under in-situ
stresses. They found that the casing in directional well under
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the action of inelastic surrounding rock displays a complex
mechanical state. Taking the in-situ stresses and well trajec-
tory into account, the mechanical model of casing in direc-
tional well under in-situ stresses is established. The mechani-
cal interaction of casing and surrounding rock is simplified to
a generalized plane strain problem. To analyze the casing be-
havior, the complicated solution is divided into three simpler
problems: the elastic mechanics analyses under normal stress,
torsion stress and shear stress respectively. The analytical ex-
pressions of casing stress and load in directional well under
in-situ stresses and inside hydrostatic pressure are deduced.
This analytical solution is verified by numerical simulation.
Furthermore, casing design for the directional well through
complex formation in an oilfield is conducted.

The article [3] is devoted to the methods for calculating the
axial load in the columns of rods, drill pipes, casings and tub-
ing strings. Results of the analysis of solution of the tasks to
determine the loss of axial load along the length of different
types of columns based on their longitudinal and transverse
strain in directional wells are presented. It is shown that the
neglect of the magnitudes of transverse loads and shear forces
leads to an error of calculation of loss of axial load on the fric-
tion along the length of the oil field column at its bottom spi-
rally deformed area. The irrationality of such methods of
calculation for directional and horizontal wells is confirmed.

Ai Chi, Yu Fahao, et al. [4] proposed a model for calculat-
ing the axial force, and presented a new numerical method for
solving it by considering deflection and buckling of casing
string, as well as centralizer and washover tubing contacting
with well wall. For estimating whether casing string will be cut
off after washover head contacts with casing, it is necessary to
calculate the axial force. During extracting casing in different
well sections, based on calculating results, selecting a reason-
able bit weight can prevent casing string from being cut off. As
the axial force is known, the bending deflection of washover
tubing between two centralizers can be calculated accurately.
According to calculating results, we can calculate the proper
centralizer spacing as the theoretical basis of the reasonable
design of pipe strings for extracting casing in directional well.

The problem about identification of elastic bending defor-
mation of a drill string in curve wells based on the theory of
flexible curved rods and the direct inverse problems of drill
string bending in the channels of curvilinear bore-holes is stat-
ed in the paper [5]. The problem is solved which determines
the resistance forces and moments during performing ascend-
ing-descending operations in curvilinear bore-holes with tra-
jectories of the second order curve shapes. The sensitivity of
the resistance forces relative to geometric parameters of the
bore-hole axial line trajectories is analyzed.

The soft string and stiff string models are different casing
string methods that have been used by the oil and gas industry
to calculate torque and drag. Zhang and Samuel [6] discussed
the intrinsic difference between these two models and pro-
posed a criterion for determining which method would deliver
the most accurate results. The results demonstrate that bore-
hole tortuosity and the shape of the wellbore can significantly
change the status of the string. A string with a large-size sec-
tion can be soft in a straight wellbore. Likewise, a string with
small-size section can be stiff in a wellbore with severe tortuos-
ity. To accurately estimate the drag force, the stiffness, as well
as the wellbore shape and its clearance, should be considered.
Extensive simulations have been performed and are reviewed
in this paper. The results confirm that the soft string model is a
better choice when the string is slimmer, the wellbore is in a
lower curvature shape, and the clearance is larger. On the con-
trary, the stiff string model is more useful when the string is
stronger, the wellbore is in a high curvature shape, and the
clearance is lower. When to use the models depends on the
bending shapes of the string in the wellbore. Since neither
model is equipped to handle all scenarios, combining the two
methods provides better results.

In the article [7], the authors provided digital modeling of the
casing process in a directional well. The casing string is subjected
to great bending stress and high drag in the curved section of di-
rectional well, which may lead to strength failure, seal failure, sta-
bility failure and be hindered. Based on the finite element meth-
od, the influences of wellbore curvature, friction coefficient, run-
ning velocity and different materials on the casing strings run-
ning, are simulated dynamically in the curved section of direc-
tional well. The numerical results show that the Mises equivalent
stress on the casing strings increases obviously after being run on
curved section, and the maximum equivalent stress occurs at the
bottom of the casing strings when increasing the running velocity.
With the increase in wellbore curvature, the drag of casing strings
running increases nonlinearly, but the smoother the wellbore wall
is, the smaller the friction is. The greater the rigidity of the casing
is, the greater the drag in the curved section and the more difficult
it is to casing strings running.

Kryzhanivskyi, et al. [8] applied the long rod theory, which
receives large nonlinear deformations under the action of its
weight, to describe the elastic mechanics of a casing in a deep
curved well. It is proved that the elastic rod deformation under
the impact of the longitudinal and transverse forces can be cal-
culated by a heterogeneous second order differential equation
with variable coefficients. The solution of the equation of long
rod angular deformations was found in the form of a linear com-
bination of Airy and Scorer’s functions and in the form of three
linearly independent polynomial series in the sum with a partial
answer. This solution was the clue to the formulas of deflections,
angular slopes, internal bending moments and transverse forces
in the column with the arbitrary arrangement of supports and
boundary conditions in their intersections. But this task did not
take into account the reaction of the well walls and the friction
forces acting on the casing string during its movement.

The problem of determining the forces acting on the string
of pipes in the well when its shape is given is considered in
Yu. Pesliak’s work “Calculation of stresses in columns of pipes
of oil wells” (1973). To solve it, a system of G. Kirchhoff equa-
tions describing the spatial deviations of a long elastic rod,
which has a finite bending stiffness, is used, and its solution in
a vector form is carried out. However, the results in scalar form
suitable for engineering calculations are obtained only for the
case of a well section, which is curved along a circular arc of a
constant radius in one plane, and for a well case, which is pre-
sented by a helix with a constant zenith angle and a constant
rate of change of the azimuthal angle. In order to determine
the axial forces and frictional forces in the case of random de-
viation of the well, numerical integration is applied on an ex-
ample of a well with a constant speed of change of the zenith
and azimuthal angle to their maximum value of 90°.

The problem of the advance and bending of the string of
pipes in the deviated borehole is considered in the monograph
“Calculations of boundary states of pipe columns and pipe-
lines” (1997) by P. Vyslobitskyi. For its solution a geometric ap-
proach is used to study the force interaction of pipes with well
walls. At the same time, the pipe was graphically inscribed into
well deviated along the circular arc following several possible,
according to the author, schemes of placement of contact points
with its walls, in which reactions and frictional forces may oc-
cur. The acting forces were determined by the equilibrium
equations of the pipe sections between these contact points and
the pipe deformation equations, for which the formulas of the
small deformations of the cantilever beam were unjustifiably ap-
plied. With the general formulation of the problem of bending
and casing string drift in the deviated wellbore, a system of dif-
ferential equations was proposed. The system had to express the
bent state of the string, but it does not contain two equations of
equilibrium of internal and external forces projections, and
therefore it is incomplete and cannot be solved.

Thus, the unresolved problem is obtaining a closed system
of differential equations, which describes the deformation of
the string of pipes in a deviated well under their own weight
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and the reactions of the walls. The solutions of this problem
will determine the distribution of axial forces, bending mo-
ments and stresses in the body of the column.

A long casing string in the well behaves like an elastic, sol-
id rod [8], which has sufficient bending stiffness. It is influ-
enced by a vertical weight j, uniformly distributed along the
length, which creates variable axial forces in the body of the
column. The column of initially rectilinear pipes in the curvi-
linear well forcibly receives the geometric shape of its curved
axis. This is due to the reaction forces of the well walls, which,
together with the weight, act on the column and bend it.

In the first approximation, we consider that the column
contacts the well walls along its entire length (we neglect small
gaps between the wall and the pipe in comparison with large
geometric deviations of the axis from the rectilinear form). Con-
sequently, along with the distributed weight j, a long elastic rod
is influenced by the reaction of the walls f(s), distributed by its
length according to a certain law, as a result of which it acquires
a given form. We assume that the distributed load f(s) is directed
along the normal to the curvilinear axis of the rod and is positive
if its projection to the horizontal has a positive direction.

The purpose of the work is to develop a method for deter-
mining the distribution of axial forces and the reactions of the
walls, which, together with their own weight, act on a casing
string and make it follow a given wellbore shape. To do this, it
is necessary to develop and integrate the system of differential
equations of equilibrium of a long elastic rod bent in one plane.
According to the obtained results, it is necessary to find ex-
pressions of force parameters that describe the stress-deformed
state of the casing in a deviated well.

The method to obtaining the main system of differential
equations and its first integral. The analysis showed that large
elastic deformations of the long rod of the unit-value stiffness
can be considered for the bend, without losing the universality
of the solution [8]. At the same time, the bending moment is
numerically equal to the curvature of the rod, and the current
force factors differ in size from the estimated ones by the factor
EJ (Eis the elastic modulus of the material, J is the moment of
inertia of the cross-section of the rod).

Let us consider the arc element — the segment of the curved
axis of the rod with length ds, at the beginning of which the
tangent line is inclined to the vertical under zenith angle 9 (Fig.
1). In this section, the internal axial # and transverse u forces as
well as bending moment ¢ are applied. In the final crosscut of
the element, which received an increase in zenith angle 9, the
same forces are applied, but with increments dt, du, dgq corre-
spondingly, whose direction must balance the initial ones.

The element is also affected by external forces: its weight
J -ds, the reaction of the wall /- ds and the friction force &, - - ds,
directed along the axis of the string against its motion, where &,
is the coefficient of friction. In the equations of equilibrium,
discussed below, the sign of friction corresponds to the descent
of the string in the well. For the case of lifting a column in the

X
g
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Fig. 1. The scheme of loading of an elastic bent element of a
casing string in a curvilinear well

equations and their solutions, the coefficient of friction should
be taken with the opposite sign.

The following system of differential equations is obtained
from the equilibrium conditions of the bent rod element (Fig. 1)

du  d9
—+t-——jsind+ f=0; 1
prairt f 1)
dt dd
——u-—+jcosd—k f=0; 2
I W tieos S (2)
dq
—+u=0. 3
s (3)

Differential (1) was found from the force projections upon
the normal, and (2) — upon the tangent (Fig. 1). Equation (3)
is based on the equilibrium of boundary moments and mo-
ments of edge forces.

A similar system describing the bending deformation of a
long elastic rod in one plane was obtained in the work by
R. Frisch-Fay. However, it did not take into account the reac-
tion of the wall and friction, and was incomplete. In order for
the system to have a solution, the fourth equation is required,
which is the kinematic Euler equation. It establishes the con-
nection between the angular deformation of the rod and its
curvature g (bending moment)

, d§ 1
g=9 5 R C))
where R is the local radius of curvature; the dot denotes the
derivative of's.

Due to this, the system of differential equations becomes
closed and has the only solution.

Thus, the deformations of casing string, bent due to the de-
viation of the borehole, are described by a non-uniform system
of four differential (1—4). As we see, this system contains three
unknown functions #, ¥ and g (which are internal force factors)
and an unknown function of the distributed reaction f (which is
an external load). The function 9 is known due to the inclino-
metric table of well measurement. It is necessary to solve the
inverse problem — having the known load j and the defor-
mations 3 given by the shape of the well, it is necessary to deter-
mine the unknown internal distributed forces 7, u, g and such an
external load function £, which creates a given shape of the rod.

Let us substitute (3 and 4) into (1 and 2) and reduce the
system (1—4) to two equations

t-9'-9" =jsind - f; (®)
r+9"”-9 =—cosd +k,f. 6)

The system of differential (5—6), where the zenith function
9 is known, contains two unknown functions 7 and f. Accord-
ing to (5), we have

f=jsin9—1-9"+9". (7)

Thus, the problem of determining the distributed reaction
of walls frequires the finding of the axial force 7. To do this, let
us multiply (6) by k, add it to (5) to exclude the function f
from the system (5—6)

r+ k9 t=k9" -9 9" +kjsin®—jcos9.  (8)

The resulting differential first-order equation is linear, in-
homogeneous and, in general, with variable coefficients. We
will study and solve the basic differential equation (8).

Application of the Bernoulli method to integrate the differ-
ential equation of axial force. Let us mark the right part (8) in
the following way

0=kJ3" -9 -9" +k,jsin3 —jcos9. )

Integration (8) is carried out provided that the coefficient
of resistance of the string motion within a single area is con-
stant: k, = const, 0 < k, < 1. Let us solve the Cauchy problem
provided that in the established intersection with the coordi-
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nate s= L, where z=Z, 3 = ® and axial force #(L) = t,is applied.
The general solution of the inhomogeneous equation (8) is
sought by the Bernoulli method [9] in the form of a product of
two functions: 7= v - w; its substitution in (8) gives
Vew+v-w+kS - v-w=0;
V+kS -v)-w+v-w=0. (10)
Since we are looking for one function #, then one of the
two product functions can be arbitrary. Let us choose v so that
it satisfies the homogeneous equation, formed from the ex-
pression in brackets (10) and solution of which we can find by
separating the variables [9]

V+kS -v=0; (11)
v=eh©9, (12)
Now let us substitute expressions (9, 11 and 12) into (10)
and integrate the resulting differential equation
eP(w—c)= k,jek'SS"’ds - j.ekls 9'9"ds +
) L L (13)
+j_[e"19(k, sin 9 —cos 9)ds,
L

where c is the constant of integration.
The first of the integrals contained in (13) is found by inte-
grating the parts

Iek,SSI//ds — Jeklsd(sr/) — ekaS” _ek,®9n® _k[ J‘ek,SS/S//dS’
L L L
where 34 = 9'(®) is the value of the derived function in the
intersection, where 9 = 0.

Now the first and second integrals of (13) can be combined

k,jek'SS”’ds - j.ekaS’S”ds =
3 1

= k,ehO (b 09" - 1)~ (1+ k2) [ 4299 ds.
L
The second of integrals (13) is also integrated by parts

JekaS'S”ds = 1J‘e""gd(S’z) =
L 2 L

= ?(ek,w—@)gfz -92 ) _%je’fﬁsﬁds.
L

Substituting the resulting integrals in (13), we obtain a
function w

w=k, (e"99" - 9L -
1+k; Ko-oyar _qn)_ K [ koqr
- 2’[(6’/ 9 —86)—ﬁ2[e19 ds |+  (14)

. S
+ /{@ J.e"fg(kt sin9—cos 9)ds +c.
ek

The product of functions (12 and 14) gives a function ¢
t=el Oy =k (8” — el @9 gy ) -

1+k2 [ (an Ke-9a2)_ K [ koqs
_2[(9 —e 89)—ﬁ£e' 9 ds +

+%jek'9(k, sin 9 —cos §)ds + ce® O~
e 1
L

Under the conditions of the Cauchy problem, we get ¢ =1,.
Consequently, the distribution of the axial force in the body of

the column, taking into account the deviation of the well and
friction on its walls, has the form

1=k, (9" 9peh )

1+k2 ooy, K ©
R (92— 9ok @) 4 S [okog5ds |- (15
2 [( © ) e’”sJ‘ (13)

s

. L
_eZﬁjek’S(kr sin 9 —cos 9)ds +1,e"(©,
N

In the expression (15) the direction of integration is
changed. Transformations helped to get rid of the second and
third derivatives under integrals. The last integral (15) cannot
be simplified in general case. It can be found in quadratures
only for the case of a constant radius of the well curvature
when ds = Rd$ [10].

Knowing the axial force 7 (15), one can find a distributed
reaction of the well walls by expression (7).

Method of numerical differentiation and integration of incli-
nometric table. According to the results of directional survey,
that is the table of zenith angles 3, measured with the interval
As, a real well profile is constructed. At first, they determine
depth gain Az, horizontal displacement Ax from the vertical
axis of the well in the directional drilling, lateral deviation Ay
from the directional orientation

Az, =As, cos9,;
Ax, = As, sin3,, cos(4, — Az);
Ay, = As, sin$,, sin(4, — Az),

where # is the sequence number of measurement; As, =S, —S,_;
is coordinate gain s of intersection along the deviated wellbore;
A, is measured magnetic azimuth; Az is azimuth of directional
orientation.

According to the calculated gains, absolute values of depth
Z,, horizontal displacement X, and lateral deviation Y, as the
sum of gains are determined

Zn :iAzi; Xn :imi; Yn :iAyi’
i=1 i=l i=1

by which they build a vertical profile and a horizontal well plan.
For a numerical differentiation of a table-defined function

9, a central scheme [11] is used
dgn — Sn+l —9‘”71 , (16)

Spil = Sp-1
where the letter d denotes numerical differentiation.
According to (16), the values of the second d2 and the

third d3 derivatives can be obtained correspondingly

dzgn — d9n+l —dS’H :
Sp1 =Sl
039, = 92920 =29,.,
S =S

n+l n—1

Applying the (7), the true value of F, of the distributed re-
action of the well wall in the n” section is found by the formula

F,=EJf,=EJjsin®,— T,-d9,+ EJ-d39,,  (17)

where 7, = EJt, is the actual value of the axial force, which
must first be found, defining the integrals in the (15).

The numerical integration of tabulated functions is carried
out according to the trapezoidal rule [11]. For this, the interval
of integration [s, L] is divided into elementary intervals; on
each of them, they find the area of the trapezoid, constructed
on the ordinates of the function at the edges of the interval.
The value of an integral is equal to the sum of the squares of all
elementary trapezoids.

For an inclinometric table, for an elementary interval, it is
natural to choose the measurement interval As, which makes it
possible to find the values of the integral functions for the for-
mula (15) at the edges of each interval.
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As formula (15) shows, to find the value of the axial force ¢ in
the current section s, it is necessary to know its value 7, at the end
of the integration interval. The only cross section of the casing,
where the axial force is known in advance, is its free end (casing
shoe) — here it is £,= 0. Proceeding from this, the following meth-
od of numerical analysis of inclinometric table is developed.

For the integration interval, we choose the measurement in-
terval As. Then in the current section s,,, which is the beginning of
the interval and where you need to find the axial force #,, one can
determine all the values of functions and derivatives necessary for
(15). The same values at the end of the interval (where s = L and
9 = @) are found by the data of the next (# + 1)* measurement.

At the same time, for formula (15) the integral value is
equal to the trapezoidal area constructed on the ordinates of
the integrands determined according to the »™ and (n + 1)*
measurements. The value of the trapezoidal area is found as
the product of the interval As to the arithmetic mean of the
specified ordinates.

Thus, transforming formula (15) and integrals in it accord-
ing to the proposed method, the real value of the axial force 7,
at each step of integration is determined by the formula

EJ
T, = m{k(e"“"nﬂsn —emd29, ) -
ko,

2
1 +2k (e"sn(d 9,2 —ekni(d9,, ) +

+k(s,,,—5,) x (18)

e%:(d9, )} + ek (d9, )} H EJj
+ —_—
2 ek

e*%(cos9, —ksin9,)+e % (cos9,,, —ksin9,,,)
X X
2

eksrﬁl

s )+, —

x(s
e

n+l

Beginning with the last N measurement for which the
value Ty = EJt, =0 is known, according to (18), we find the
previous value 7 _,, by which we get value T _,, and so on.
The determination of the distribution of the axial forces in the
body of the pipe occurs from the bottom upwards along the
casing from its free end, with the preset value of the axial force
for the last measurement.

The design of the casing column is described by setting the
diameters D, of the pipes and the thickness 3, of their walls at
each depth interval according to the well program; conse-
quently, we determine the area S, of the crosscut of the pipes
and its moments of inertia J,,.

At each depth interval, we set the mass m, of one linear
meter of the casing pipe, the mass m,, of the collar, the length
1,, of the pipes (the distance between the couplings), the mass
m, of the centralizer and the distance /. between them. Let us
determine the combined mass m, of the linear meter of the
casing column by the formula

m m
m,=m, +—"+—5,
[ L

m

The coefficients of friction are given for each interval of
bedding of rocks in accordance with the borehole log. We also
set the values of the densities y,, of the drilling fluid, which is in
the well after it was washed out before the casing is lowered.
The combined weight j, of the linear casing meter is calculated
by the formula

j _9.8p-v,) m,
" EJ, p’

where p is the density of the casing material; m,/p is the area
of its combined cross-section.

Along the wellbore, we find the values of the axial forces
and the reactions of the wall by the (18 and 17). The values of

the local radii R, of the curvature and the internal bending
moments M, are calculated by the formulas
R,=1/dS,; M,=EJqg,=EJdY,. (19)

To determine the strength of the casing, we must deter-
mine the local maximal values of internal stresses in the body
of the pipes by the sum of stresses from tension and bending

Tn ‘M” Dn Tn EDn
=1l 4 =—+ .
mTe g, 2 S, 2R

n

(¢

(20)

The value of the bending moment and the radius of curva-
ture is taken modulo to obtain the maximum stress value in the
pipe, regardless of the direction of its bend and the location of
the stretched fibers.

The developed numerical analysis program was tested in a
test mode by comparing with the results of analytically found
formulas of the axial force ¢ and reaction of walls f for a well
section of a constant radius of curvature, taking into account
frictional forces [10]. At the same time the error of program
calculations was no more than 0.02 %.

Results and discussion. Approbation of the developed meth-
odology is carried out according to the data of the operating well.
At first the analysis of its program was carried out using theoreti-
cal solutions. For this purpose, in the areas from which the real
program is made, the following parameters are calculated ac-
cording to the formulas obtained analytically in [10]: the distri-
bution of axial forces in the initial and final vertical sections; the
distribution of axial forces and the reactions of the walls on the
radius of zenith angle buildup, on two inclined rectilinear sec-
tions and two radius sections of the zenith angle decline. The
values of the radii of curvature and bending moments are calcu-
lated according to the (19), the maximum stresses — according to
(20). The results of calculations are presented in Fig. 2.

The theoretical analysis of the well design showed that the
axial force in the body of the column with increasing depth
decreases piecewise linearly on straight sections (vertical and
inclined), as well as on the curved ones along a circular arc.
The same nature has the distribution of tensile stresses in the
body of the pipes. At the same time, a discontinuous change in
the stresses of two types was detected. The first type (on the
marks of 1200 and 3700 m) is caused by a change in the stan-
dard size of the casing pipes. The second type of stress jumping
is typical for the column curving intervals (with a constant ra-
dius of curvature according to the program) and is determined
by the value of the bending moment created by the curvature.
In addition, jumps of well wall reactions in the regions of the
conjugation of its rectilinear and curved areas occur.

The jump-like nature of the change in the stresses and re-
actions of the walls is due to the fact that in the transition from
rectilinear areas of the design well to those curved along a cir-
cular arc there is no geometric break of its axis, since the tan-
gents coincide in the transitional section. However, the jump
in the bending moment occurs, which is on the arc and is pro-
portional to the curvature, but is absent on a straight line.

This is a consequence of the idealization of the project, in
the first place, through the description of the distorted areas by
the arc of the ideal circle. In a real well, whose diameter is
slightly larger than the diameter of the pipes, the edges of the
column at the conjugated sites due to the elasticity of the pipes
receive variable curvatures, which acquire values from R™! on
the arc section to 0 on a straight line and vice versa.

A positive well reaction indicates that the casing column
rests on its lower wall; this is observed on inclined rectilinear
and in the areas of the decline of the zenith angle. The negative
reaction of the walls shows that the column rests on the upper
wall of the well due to the forces of elasticity of the initially
rectilinear casing; this is manifested in the area of the zenith
angle buildup. On the inclined sections, the reaction of the
well coincides with the reaction of the inclined plane. These
results are consistent with the conclusions of [10].
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The numerical analysis program also worked out the pro-
gram of the operating well, given in the form of inclinometric
table; the results of this are presented in Fig. 2 with blue lines.
Patterns of the distribution of axial forces, the reactions of the
well walls, bending moments, maximum stresses in the body of
the column, obtained by numerical analysis and calculated by
analytical formulas [10], qualitatively coincide completely.
The error of the developed numerical analysis method is due
to the inaccuracy of numerical differentiation and integration
and depends first of all on the choice of the value of the inter-
val [11]. The difference between the numerical and theoretical
calculations of the design maximum stresses in the body of the
pipes is 0.01—0.03 % along the entire column.

In addition, the developed program of numerical analy-
sis worked out inclinometric table of data of field measure-
ments of the actual well number 1; the results of this are pre-
sented in Fig. 2 with red lines. This allowed revealing the

following features of the behavior of the casing in a real
drilled borehole.

The actual deviation of the real well profile from the design
one is shown through a graph of bending moments (Fig. 2, d),
which can also be considered as a graph for changing the actual
curvature of the well, since they are proportional according to
(19). As you can see, the axis of an actual drilled well signifi-
cantly deviates from the design profile (rectilinear or radius
one). This is evidenced by the continuous change in bending
moments by both magnitude and direction, which is caused by
a change in the actual values of the local curvature of the well.
This is due to the impact of a large number of technical, tech-
nological and geological factors on the drilling process.

Under these conditions, a casing column, trying to pre-
serve its initially rectilinear form, at the expense of the forces
of elasticity rests on opposite walls of a stochastically curved
well, causing variables in magnitude and direction of reaction
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Fig. 2. Wells profile (a), graphs of axial forces T (b), walls reactions F (c), bending moments M (d) and normal tensions c (e) in column

combined at depth intervals:

blue line — according to the well project; red line — according to inclinometric measurements
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(Fig. 2, ¢). By comparing Figs. 2, ¢, d, we can see that the mag-
nitude and change in the local curvature of the well causes a
proportional value and a change in the reaction of its wall. The
reaction of the wall is also proportional to the bending rigidity
of the casing. Accordingly, the internal bending moment and
bending stress in the body of the pipe also change.

The largest jump in the values of the reaction of the actual
well walls, the bending moment and the maximum stresses in the
body of the casing is observed at a mark of 1,440 m, where the
actual deviation of the well and zenith angle buildup (as opposed
to the design of 1,350 m) begin. Along with this, the results of
numerical analysis of an actual well made it possible to detect its
areas with a significant increase in the curvature and the reaction
of the wall. These are areas where the forced deviation of the well
(zenith angle buildup and decline) occurred. In addition, in the
areas of stabilization of the zenith angle, one can also find a local
increase in the curvature and the reaction of the wall.

Numerical analysis of the stresses shows that for this well pro-
file the tensile stress of the column is dominant (Fig. 2, e). Local
stresses are of fluctuating nature and are related to the increase of
local curvature of the well and bending moment in the column.

Conclusions. The stress-strain state of the casing in the
curved well can be determined by the non-uniform system of
differential equations, which describes the bending of a long
elastic rod under the action of distributed forces of its own
weight, the reaction of supports and friction. Having the shape
of the well with a known function of the zenith angle, we can
find the solutions of the system in the form of functions of the
distribution of axial forces and bending moments in the body
of the column, as well as the reactions of the walls, which lead
the column to the actual well profile.

Parameters of the stress-strain state of the casing in an ac-
tually drilled well can be determined by the developed meth-
ods of numerical integration of the data of inclinometric mea-
surements of the well and the software of their numerical
analysis. This allows us to identify areas of local increase in
curvature and stresses of the casing pipes in the curved well.

The developed method of numerical analysis of the well
allows detecting the areas with a significant local increase in
the curvature, which indicates their obstructed passability. It
allows one to accurately determine the depth intervals for in-
creasing the well diameter. This must be done before lowering
the casing string. In addition, according to the results of the
analysis, it is possible to determine the parameters of the
stress-strain state of the casing, which can be used to predict its
working capacity and operating life in the curved well.
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CunoBa B3aemois 00caaHoOi KOJIOHU
3i CTIHKAMH KPHUBOJIiHIHOI CBepA/IOBUHI
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Mera. Po3po0jeHHsI METOOUKU BU3HAYEHHSI OChOBHUX
3YCWJIb i peakliil CTiHOK y3I0BX 00CalHOI KOJIOHU, 11O 3TH-
HAaIOTb ii Ta HAJAlOTh iii BUTHYTY (hOpMy CTOBOYpa CBEpIJIO-
BUHU.

Mertoauka. O0GcagHa KOJIOHA MpeacTaBieHa K JOBIUiA
MPYXHUI CTPUXKEHb y KPUBOJIiHIiHINM cBepaioBuHi. s
onucy nedopMalliii CTpUKHS po3podJieHa HEOAHOPiIHA CUC-
TeMa 3 YOTUPbOX NudepeHliaTbHUX piBHSIHb. BoHa 3BeneHa
1o audepeHIiaTbHOTO PiBHSIHHS MEPILOro MopsIIKy BiTHOC-
HO 0ch0BOI cuii. MoTo po3p’si30K GyB 3HANIECHMIT METOIOM
BepHynni. 3acTocoBaHO YMcesIbHE iHTerpyBaHHS audepeH-
LiaJIbHOTO PiBHSIHHSI.

Pe3yabraTu. 3HalineHO po3MOAi OCbOBUX 3yCUIIb Y3I0BX
00CcaHOI KOJIOHU 3 ypaxyBaHHSIM KPUBU3HU CBEPIUIOBUHU i
TepTs, a TAKOXK CWJI peakllii CTiHOK cBepa1oBUHU. Po3pobiie-
Ha MEeTOIMKA YMCEIbHOTO iHTErpyBaHHSI TaOIULIi iHKJIIHOMe-
TPUYHUX BUMipIOBaHb CBepIOBMHU. OTpUMaHi po3paxyH-
KOBi (hOpMyJM [Tl CWJT peakilii, OChOBUX CUJI, STUTHAIBHUX
MOMEHTIB i HaIlpy>KeHb, 110 IiI0Th B 00CaIHUX TPyOax y v~
OVHi CBEpIJIOBUHU.

HaykoBa HoBu3Ha. Po3B’s13aHa 3a1aya BpaxoBy€e peak-
Lil0 CTIHOK i CWJU TepTs, 11O CTBOPIOIOTH IMO3I0BXHIM
3rUH NiJ 4ac pyxy KoJioHu. CucreMa audepeHLiaabHUX
PiBHSIHb piBHOBAaru A0MOBHeHA KiHEMaTUYHUM PiBHSIHHSAM
Eitnepa. 3a 3MiHHY iHTerpyBaHHSI NPUIHATO (PYHKIIiIO 3€-
HITHOTO KyTa, 110 € BiIOMOIO 3aBISIKM TaOJMILi JaHUX iH-
KJiHoMmeTpii. Po3B’s3aHa obepHeHa 3aj1a4ya — 3a KYTOBUMU
nedopmallisMu obcagHOi KOJOHU, 110 3amaHi (Gopmoro
CBEpIJIOBUHU B iHKJIIHOMETPUYHIiil TabaMLi, BU3HAYEHI
BCi HEBiJIoOMi BHYTpIIlIHi CHMJIM, a TAKOX 30BHIllIHSI pO3MO-
JiJieHa peakilisi, IKa 3MYILIY€E KOJIOHY ITOBTOPIOBATU (hOpMY
CBEpIUIOBUHU.

IIpakTiyna 3HaYuMicTh. PO3po0eHa MeToIMKa 103BOJISIE
BUSIBUTU [IiJISIHKYU 3i 3HAYHUM JIOKAJTbHUM 301JIbIIIEHHSIM
KPUBU3HM CBEPIJIOBUHM, 110 CBiqYaTh MpoO iX YTPYAHEHY
npoxiaHicTe. Lle 1ae 3Mory TOUHO BU3HAYUTH iHTEPBAIU TJIU-
OWH ISl pO3IIMPEHHS iaMeTpa CBEPUIOBUHU, 1110 € HEOO-
XiITHUM TIepe]] OTTyCKaHHSIM KOJIOHU. 3a pe3yIbTaTaMy aHaJi-
3y MOXHa BU3HAYUTHU MapaMeTpu HampyxkeHo-aedopmosa-
HOTO cTaHy 00CalHOI KOJIOHHM, 3a SIKUMU TPOTHO3YBaTH i
Mpalue3aaTHICTb i pecypc poOoTH.

Kimouosi ciioBa: oocaona xonona, kpugoniniiina cgeponogu-
Ha, IHKAIHOMeMPUYHI BUMIPIOGAHHS, PeaKyis CMIHKU
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