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ANALYSIS OF STRESS IN THE CONVEYOR BELT 
(MAXWELL–ELEMENT MODEL)

Purpose. For a conveyor belt, the material of which corresponds to the Maxwell-element model, to analyze the causes of the 
occurrence of longitudinal dynamic stresses and investigate the peculiarities of the propagation of dynamic stresses along the route 
of material transportation.

Methodology. To calculate the value of static and dynamic stresses arising in the conveyor belt, the apparatus of mathematical 
physics was used.

Findings. A wave equation is written that determines the propagation of longitudinal vibrations in a conveyor belt, the material 
of which corresponds to the Maxwell-element model. An expression is obtained for calculating the speed of propagation of elastic 
vibrations along the conveyor belt, the frequency of vibrations and their wavelength. The characteristic relaxation time of distur­
bances is determined. The method of successive approximation was used to solve the wave equation. The estimation of the char­
acteristic time of acceleration of the conveyor belt, at which there is no destruction of the material of the conveyor belt, is given.

Originality. PDE-models of conveyor-type transport systems are improved, which are used to design belt speed control systems 
under restrictions on speed control modes. It is shown that under the modes of acceleration or deceleration of the conveyor belt, 
the effects associated with the occurrence and propagation of dynamic stresses along the conveyor belt, due to the characteristics 
of the material corresponding to the Maxwell-element model, are insignificant.

Practical value. The results obtained make it possible to determine the limitations on the modes of acceleration or deceleration 
of the conveyor belt, preventing its damage and increased wear. This opens up prospects for designing effective control systems for 
the parameters of a conveyor belt, unevenly loaded with material along the transport route.
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Introduction. Conveyor-type transport systems are widely 
used in the mining industry [1]. This is primarily due to the 
fact that: a) conveyer is one of the most economic ways of the 
material transportation from the extraction place to the place 
of shipment; b) the conveyor allows moving the material 
through difficult rugged terrain [2]. Transport costs are up to 
20 % of the cost of the extracted material at a material load 
factor in the transport system of 0.5–0.7 [3]. With an increase 
in the length of the transport system and a decrease in the load 
factor, the growth of unit transport costs is nonlinear, which 
can lead to an increase in costs by several times. To reduce 
energy costs, systems for controlling the belt speed [4, 5], the 
value of the input material flow [6, 7], combined methods and 
methods based on the energy management methodology [8] 
are used. The belt speed regulation allows reducing the spe­
cific energy losses for material transportation up to 30 % [9]. 
Dividing the transport system into separate sections [10] and 
using multi-motor systems allow material to move through the 
transport system at different belt speeds for different sections 
[11], which saves energy. This is of particular importance for 
long multi-section transport systems [2]. The speed or input 
flow regulation leads to a change in the productivity of the sec­
tion, and therefore to a change in the power required to oper­
ate the conveyor section in standard mode. The presence of 
the power switching modes leads to the appearance of dynam­
ic stresses in the belt, which can be the reason of its damage. In 
this regard, in the design of control systems that determine the 
power switching modes, the issue of taking into account the 
limitations associated with the occurrence of dynamic stresses, 
which can exceed the limiting value and lead to the destruction 
of the belt, is relevant.

Formulation of the problem. Changing the power mode of 
the conveyor section leads to a change in the tractive moment, 
and, accordingly, to the subsequent acceleration (braking) of the 
conveyor belt. For an asynchronous motor with a phase rotor, 
the dependence of the traction torque of the electric motor Meng 
on the rotational speed neng at the nominal values of the torque 
Meng 0 and rotational speed neng 0 of the electric motor is shown in 

Fig. 1. The process of acceleration (braking) of the conveyor belt 
with the material occurs in several stages, each of which is char­
acterized by an abrupt change in the tractive moment of the 
electric motor. Such a sawtooth change in the tractive moment 
depending on the change in the engine speed (Fig. 1) is the 
source of the existence of dynamic stresses in the belt. The pres­
ence of dynamic stresses imposes additional restrictions on the 
modes of acceleration (braking) of the conveyor belt.

These restrictions must be taken into account when syn­
thesizing algorithms for optimal control of the flow parameters 
of the transport system.

The linear density of the material [c]0(t, S) along the trans­
port route at the time t at the point of the conveyor section 
with the coordinate S ∈ [0, Sd] can be calculated from the rela­
tion [11]
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g(t) = my(t)Td/Sd;  q0(t, x) = [c]0(t, S)/[c]0 max.

The expression q0(t, x) determines the relationship be­
tween the linear density of the material [c]0(t, S), the speed of 
the belt my(t) and the input flow of the material l1(t) at the 
initial distribution of the material with the density Y(S). The 
average time Td of material passage along the transport route 
by the length of the conveyor section Sd is taken as the charac­
teristic time of the process. The value [c]0 max corresponds to 
the maximum permissible linear density of the material for the 
conveyor section. The choice of characteristic values Td, Sd, 
[c]0 max is conditional.

The analysis of the propagation of dynamic stresses in the 
conveyor belt is performed for the Maxwell model of an elastic 
element (Fig. 2) with the elastic modulus of the element E and 
viscosity h
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The Maxwell elastic element model can be used for con­
veyor belts containing rubber, nylon and polyester [17]. When 
the traction load changes as a result of power switching, the 
Hooke element is deformed by an amount s0/E, and the vis­
cous element is deformed at a constant speed s0/h. The total 
strain e(t, S) is determined by integrating (1)

0 0
0( , ); (0, ) .t t S S E

E
σ σ

+ = ε ε = σ
h

With a long time of the presence of stress, the deformation 
e(t, S) becomes quite significant. For a constant strain speed 
ve ≈ const the solution to (1) has the form

0
0

( , )( , ) (1 ); , .t t d t St S v e v t E
dt
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ε ε

ε
σ = h - = = h

With a long time of the deformation process, the stress in 
the conveyor belt tends to a constant value.

The solutions to (1) demonstrate the characteristic behav­
ior of the belt material (Maxwell element) when loaded. To 
study the propagation of dynamic stresses in a conveyor belt, 
let us construct an equation that takes into account the bound­
ary conditions represented by the relationship between the 
traction moments and the speed of the conveyor belt.

Literature review. The properties of the material from 
which the conveyor belt is made determine the process of dy­
namic stress propagation. In the article [12], a comparative 
analysis of the Voigt-element and Maxwell element models is 
given and, using the Lagrange equations, the calculation of 
the dynamics of stress propagation along the conveyor belt 
for various acceleration/deceleration modes is carried out. 
The calculation of the speed modes of the conveyor section 
for the Maxwell element elastic element model and the Win­
kler foundation transport system model is presented in [13]. 
The elastic Kelvin-Voigt element is used in the model con­
taining the Lagrange equations [14] to calculate the belt 
stretch curve and velocity curves dependencies. The article 
[15] examines the models of the elastic element Kelvin-Voigt 
element, the combination of Hookean and Kelvin-Voigt ele­
ment, as well as the combination of two Kelvin-Voigt ele­
ments. Long-wave oscillations in the conveyor belt for the 
Hookean element model and the analytical PiKh-model are 
studied in detail in [16]. The results of experimental studies 
on the mechanical properties of composite materials for the 
manufacture of conveyor belts with polyester and polyamide 
cartridges are given in [17].

Dynamic stress propagation equation. The equation de­
scribing the motion of an element dS at a point S on the belt 
with effective mass dm and acceleration dm(t, S)/dt has the 
form

( , ) ( , ) ( , ) .W
d t S dm t S dS Bh t S Bh dF

dt
μ

= σ + -σ -

The force of resistance to the movement of the belt FW is 
the sum of the resistances [16]

FW = FH + FN + FSt + FS.

The primary resistances FH assuming a linear relationship 
between the resistances and the transported load, are deter­
mined by

dFH = dSfC  gm([c]0R + ([c]0(t, S) + [c]0) cos dC),

where fN is the coefficient of rolling resistance of the driving 
rollers and resistance to indentation of the belt; gm = 9.81 (m/
s2); [c]0C is linear density of the belt; [c]0R is linear load from 
rotating parts; dC is the angle of inclination of the section of the 
conveyor. For a conveyor located horizontally, cos dC = 1.

The force FN, taking into account the influence on the 
movement of the secondary resistances, is expressed in terms 
of the value of the primary resistances to movement FH (DIN 
22101:2002-08)

FN = (C - 1)FH.

For extended conveyor systems C ≈ 1.05. The gradient re­
sistance of the belt and the conveyed material is determined by 
the expression (DIN 22101:2002-08)

dFSt = dS sin dC gm([c]0(t, S) + [c]0C).

For horizontally located sections, it is absent, sin dC = 0. 
For most conveyor sections, it is assumed that the force FS, 
associated with special resistances, determined by the design 
of the conveyor, is small FS  FH. Taking these assumptions 
into account, let us write the expression for the force of resis­
tance to the movement of the speed in the form

dFW = dSCfC gm([c]0R + [c]0(t, S) + [c]0C).

The effective mass dm of an element dS at a point S on 
the conveyor belt is determined through the effective density 
[c]ef(t, S) of the driving element

dm = [c]ef(t, S)dS;  [c]0ef(t, S) = [c]0R + [c]0(t, S) + [c]0,

which allows us to write the original equation of motion of an 
element dS at a point S on the belt in the form
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Let us introduce the absolute elongation of the conveyor 
belt W(t, S ) at the time for the coordinate S. The ratio of the 
elongation dW(t, S) to the length of the segment dS is the rela­
tive deformation of the element
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S

-∂
ε = ε ≈

∂


The speed m(t, S) of the conveyor belt with the material, 
consists of the speed of the belt in equilibrium my(t) and the 
oscillating part
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dt ty
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Fig. 1. Mechanical characteristic of a phase rotor induction motor

Fig. 2. Maxwell element
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When the length of a segment dS of the transport route 
changes, the effective density [c]0ef = [c]0ef(t, S) changes. Let 
the length of the segment change and become equal (dS + 
+ dW(t, S)). In this case, the effective density [c]0ef  will change 
and become equal [c]0ef + D[c]0ef. Then, for a given section of 
the transport route, we have the ratio

dS[c]0ef = (dS + dW(t, S ))([c]0ef + D[c]0ef).

Neglecting a quantity of the order of smallness dWD[c]0ef, 
we obtain

0 0( , ) [ ] [ ] ,ef efW t S S∂ ∂ ≈ ∂D c c ≈ ε

which allows the expression for the effective linear density

[c]0ef(t, S) ≈ [c]0yef(t, S)(1 + e) ≈ [c]0yef(t, S),

to be written in terms of the linear effective density [c]0yef in 
the absence of dynamic stresses. Taking these assumptions 
into account, let us represent (1, 2) as follows
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When designing (3, 4), assume that it is unacceptable for 
the function s(t, S), e(t, S) to have a large gradient leading to 
the destruction of the belt
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Let us integrate (3) over t
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Case E/h → 0 conforms to Hooke’s law

s(t, S) = Ee(t, S),

from where s0(S) = 0. Substituting (5) into equation (4), we 
obtain
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where Cy is the speed of propagation of disturbances along the 
conveyor belt [26]. By integrating the expression
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we obtain a wave equation for describing longitudinal vibra­
tions in a conveyor belt
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Boundary and initial conditions. Let us supplement equa­
tion (6) with boundary conditions (Fig. 3)
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The tension force T4  is determined from the condition
T4 + T3 = T0;  T4 = ksT3,

under dynamic load
2
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W tT M g M
t

∂
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∂
where Mw is the weight of the suspended load, which ensures 
the pretension of the belt. For transport conveyors, the drum 
loss factor “A” is ks ≈ 1.03. Using the ratio

2
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let us write down the first boundary condition
2
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If the acceleration of the suspended load is small and, as­

suming, ks/(ks + 1) ≈ 0.5, the boundary condition can be rep­
resented in the form

2
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To construct the second boundary condition that deter­
mines the tension force T1 of a conveyor equipped with an 
asynchronous motor with a phase rotor, we will use the rela­
tionship between the tractive torque and the angular speed of 
rotation, for a given mechanical characteristic of the electric 
motor (Fig. 1). For the range neng/neng 0 ∈ [0.0; 0.4] let us define 
the relationship between the tractive torque and the rotor 
speed with the mechanical characteristic shown in Fig.1

0 0
, 1.6, 1.0.eng eng

eng eng

M n
a b a b

M n
= - = =

Let us represent the last equation in the form

	 1 2
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tT T
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M r
yμ-
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μ
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where the standard speed of the belt m0 = neng 02pr corresponds 
to the standard speed of rotation of the rotor neng 0 с with a 
drum radius r. The tensile force T1 is determined from the sys­
tem of equations
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( ) ( ) ( )
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Fig. 3. Conveyor belt speed and acceleration
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where kb is the coefficient of adhesion between the drum and 
the belt. The values of these functions for the intervals speci­
fied by the points of application of forces T1, T2, T3, T4 are 
determined by the expressions

FH23 = Sd  fC gm([c]0R + [c]0C);  FN23 = (C - 1)FH23;

( ) ( )23 0 0 0 0
0
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During the characteristic time of acceleration of the con­

veyor belt DTf material travels a path DTfm0  Sd, which makes 
it possible to consider the value M as slowly changing over time

0
0
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dS M dMt S dS M

t dtμ

c =∫ 

Since the speed of the belt is much less than the speed of 
propagation of disturbances, it follows

0
0 0 0

[ ] ( , ) ( ) .
dt tS d t S dSdt M f t dt

dt

μ μ

y
μ
c ≈∫ ∫ ∫

The solution to system (8) gives an expression for the ten­
sile force T1
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Using (7), let us obtain the second boundary condition
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Boundary condition (9) depends on the linear speed of ro­
tation of the drum my(t). To determine the magnitude of the 
speed my(t) let us use (7). Let us introduce the coefficients
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then (9) takes the form

0 0
( )

( ), (0) 0.
d t

a b t
dt
y

y y

μ
= - μ μ =

For long conveyor systems, during the characteristic ac­
celeration (deceleration) time tm the mass of the transported 
cargo is a quasi-stationary value, which allows us to count a0 = 
= const, b0 = const during the acceleration process. The solu­
tion to the last equation has the form
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The characteristic acceleration time during which the con­
veyor belt with the material reaches the value of the standard 
speed m0 at the standard value of the traction moment Meng 0, 
can be estimated by the value

01
0 1
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2s
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k
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μ →

μ

= =
p

Mm = 2([c]0R + [c]0C)Sd + M.

The solution my(t) is shown in Fig. 3. The conveyor belt 
reaches speed mst for time t ≈ 5tm. The acceleration of the tape 
has a maximum value in the interval t ∈ [0, tm]. After a period 
of time t ≈ 5tm the movement of the belt becomes uniform. 
There is no acceleration at belt speed mst. If the speed mst is less 
or more than the required value of the standard speed of the 
conveyor line, then a change in the value mst can be achieved 
through a decrease or increase in engine power as a result of 
switching the power mode (Fig. 1). Let us supplement equa­
tion (6) with the initial conditions
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For positions S = 0, S = Sd the initial conditions corre­
spond to the boundary
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Analysis of the solution of the dynamic stress propagation 
equation. When constructing the solution, we will assume that 
the characteristic time of the process tw is much less than the 
time t0, during which a significant decrease in tension occurs 
(Maxwell element)

ew = tw /t0  1,  t ∈ [0, tw].

If this condition is not met, the conveyor belt within a 
short operating time would receive a significant elongation, 
which would lead to a stop of the conveyor. Let us also assume 
that the material is uniformly distributed along the transport 
route with density [c]0yef and the speed of the conveyor belt at 
the initial moment of time is equal to zero. Then the dynamic 
stress propagation equation (6) can be represented as
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with boundary conditions
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( )0
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Let us represent the solution of equation (10) in the form

	 W(t, S) = W0(t, S) + W1(t, S) + … + Wn(t, S).	 (11)

Substituting series (11) into equation (10) and equating the 
coefficients at the same powers of the parameter ew, we obtain 
the system of equations
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Let us dwell on the solution of the first equation, which is 
determined by the zero approximation in the parameter ew. Let 
us look for a solution in the form

	 W0(t, S) = VS(t, S) + V(t, S);	 (13)
2
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The function VS (t, S) determines the static deflection of 
the belt in the absence of dynamic stresses (undisturbed state 
of the conveyor belt). The function V(t, S) is the deviation 
from the undisturbed state. Let us introduce the notation
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taking into account which, let us write down the expression for 
the magnitude of stresses in the undisturbed state
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characterizing the stress at a point S = Sd for values mst/m0 = 
= {0.1; 0.2; 0.3; 0.4} при a = 1.6, b = 1.0 (7) is shown in Fig. 4. 
The relative stress Q(t/tm) decreases exponentially, reaching a 
constant value according to equation (7). The relative stresses 
shown in Fig. 4 for the undisturbed state correspond to the 
range of variation of the belt speed meng/meng 0 ∈ [0.0; 0.4] and 
the magnitude of the traction moment Meng/Meng 0 ∈ [1.6; 1.2].

Substituting solution (13) into the equation for the zero ap­
proximation ew (12) and taking this into account
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we obtain the system of equations for the function V(t, S)
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When deriving (14), it was assumed that the material is 
uniformly distributed along the route (Cy0 is constant)
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

The relationship S/tmfor the various conveyors in operation 
is presented in the Table. The speed of propagation of distur­
bances was estimated as Cy0 ≈ 2000 m/s. This implies

(Sd/tm/Cy0)2 ≈ (60/2000)2 ≈ 0.001.

Let us first of all dwell on the study on the natural frequen­
cies of stress oscillations arising in the conveyor belt. To do 
this, let us find a solution to the problem posed, presented in 
the form

V(t, S) = T(t)X(S).

Substituting V(t, S) into (14) and using the boundary con­
ditions, we obtain after separation of variables for the ampli­
tude of standing waves

2
2

2
( ) ( ) 0;n

n n
d X S

X S
dS

+λ =

Fig. 4. Relative stress of the conveyor belt in the absence of dy-
namic stress

Table
Conveyor belt acceleration mode time

Conveyor name Sd,
m

tm,
s

dS
tμ

Conveyor at the Zimbabwe Iron & Steel Co 15 600 500 31.2

Conveyor С3, Indo Kodeco System Layout 8600 250 34.4

North Shaft decline conveyor 1350 30 45.0

Experimental conveyor [18] 3620 60 61.0

Conveyor СV002B, El Brocal [19] 2781 80 34.8
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Xn(S) = sin(lnSd)(sin (lnS) + Bn cos (lnS)),

with boundary conditions
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From the boundary conditions let us find

1 = - c0lnBn;  ctg(lnSd) = Bn;

	 tg(lnSd) = - c0ln,	 (15)

from where
Xn(S) = cos(lnS - lnSd).

The orthogonality conditions for the functions Xn(S) take 
the form
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Let us seek a solution to the problem (14) in the form of an 

expansion along the axis S
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while considering time t as a parameter. The value ln is found 
from the solution of the transcendental equation. Using the 
initial conditions
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For the case where the weight of the gravity weight is very 
large compared to the weight to be moved

Mw  [c]0yef 0Sd,

fair equality
c0ln  1,

which allows conditions (15) to be written in the form

ctg(lnSd) → 0.

From the last relation, it follows

( )0; 1 2 , (0) 0.n n n
d

B n X
S
p

= λ = - =

The resulting boundary condition corresponds to the case 
of rigid fixation at a point S = 0. The solution Xn(S), V(t, S) for 
the considered case will be sought in the form
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where the initial conditions for Tn(t) are determined from the 
system of equations
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Using the Fourier series expansions, let us obtain
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The solution to the equation for given initial conditions 
has the form

Tn(t) = cn sin (wnt);
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The solution that determines the dynamic tension of the 

conveyor belt is presented in the form
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The total tension in the conveyor belt is determined by the 

expression
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Using the notation A0, aw, a, let us consider the propaga­

tion of dynamic stresses for n = 1.

0 0
1

0 01

0 0 0

( , )( , ) sin( )cos( )

(1 ) (1 exp( )) ;

w w
w n

st

W t S BaQ
A a S A

a b
A A

=

∂
τ x = = ω τ λ x +

∂

 μ
+ -x + - - -τ x 

μ 

0
0 0

0.64 ; ; ;d st

d

S b S tB
C t S ty μ μ

μ
= x = τ =

μ

ww = w1tm ≈ 1.57Cy0tm/Sd;  lw = l1Sd ≈ 1.57.

An estimated calculation shows that for the acceleration 
modes presented in the Table, A0  B0, and, therefore, the dy­
namic stresses in the conveyor belt will be significantly less 
than the static stress. Estimation of the characteristic accelera­
tion time at which A0 ≈ B0, is determined by the expression

1
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1 1.57; .d st st
w

S
t t
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μ μ
≈ ω =ω ≈
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For the values Sd ≈ 10 000, Cy0 ≈ 2000, A0 ≈ 10, b ≈ A0, 
a ≈ 2.5A0, mst/m0 ≈ 0.4 it turns out tm ≈ 0.1, ww = w1tm ≈ p, lw = 
= p/2, and, accordingly

1( , ) 1 0.4(1 exp( )) sin( )cos .
2

Q
 p

τ x ≈ + x- - -τ x+ pτ x 
 

When S = Sd, the function Q1(t, x) goes to the function 
Q(t)/A0 (Fig. 4)

Q1(t, 1) ≈ (2 - 0.4(1 - exp(t)))x.

The dynamics of the stresses in the conveyor belt for the 
case determined by the function Q1(t, x) are shown in Fig. 5. 
A family of curves characterizes the magnitude of the stresses 
in the conveyor belt at different points in time. At B0/A0 = 1 the 
stress along the conveyor belt does not exceed the maximum 
stress value Q1(0, 1) at the conveyor belt starts. In subsequent 
time intervals, a decrease in the stress value in the conveyor 
belt occurs. The maximum amplitude of stress fluctuations is 
achieved at the beginning of the conveyor belt x = 0, which can 
lead to belt sagging effects.

An increase in the ratio B0/A0 leads to the occurrence of 
stresses with a maximum value in the middle of the transport 
section. The presence of stresses with a maximum value exceed­
ing the stress value Q1(0, 1) at the time t = 0 for the boundary 
point of the conveyor belt x = 1, is shown in Fig. 6. The analysis 
of the function Q1(t, x) allows us to conclude that when the belt 
is accelerated, the most dangerous is the initial moment of ac­
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celeration, which is determined by the gap t ∈ [0, 1[. The am­
plitude of longitudinal vibrations for subsequent periods of time 
t ∈ [1, 2[, t ∈ [2, 3[ … decreases, which is associated with an 
increase in the speed of the belt.

An estimate of the decrease in the magnitude of stresses in 
the transition to the standard value of the speed of the belt mst 
can be obtained from the analysis of the family of dependen­
cies shown in Fig. 7. For the indicated points in time, there are 
no dynamic stresses in the conveyor belt. The stresses in the 
conveyor belt are set by the expression

Q1(t, x) ≈ 1 + x - 0.4(1 - exp(-t))x,

which is written taking into account the fact that for the time 
t = 0, 1, 2, …, there are no dynamic stresses in the conveyor 
belt, sin(pt) = 0. A significant decrease in the magnitude of 
stresses occurs in the initial period of acceleration of the con­
veyor belt. t ∈ [0, 1[.

Conclusions. The analysis of the causes of dynamic stresses 
in the conveyor belt, the material of which corresponds to the 
Maxwell-element model, is carried out. The value of the char­
acteristic times of the process is determined, for which the in­
fluence of material properties is significant. Using the method 
of successive approximations, a system of equations has been 
developed that makes it possible to analyze the occurrence of 
dynamic stresses, considering the specific properties of the 
material. The propagation of dynamic disturbances, taking 
into account the features characteristic of the Maxwell-ele­

ment model, can be investigated in detail for the steady-state 
mode of operation of the conveyor belt. In this case, the char­
acteristic time of the process significantly exceeds the charac­
teristic time of acceleration or deceleration of the conveyor 
belt. This allows us to conclude that when analyzing the dy­
namic stresses arising in the period that determines the pro­
cess of acceleration or deceleration of a conveyor belt, the ef­
fects associated with the behaviour of a material whose prop­
erties correspond to the Maxwell-element model are insignifi­
cant. For the time interval corresponding to the acceleration 
time of the conveyor belt, when analyzing the causes of dy­
namic disturbances, the Hooke element model can be used 
with a sufficient degree of accuracy. The acceleration time is 
significantly shorter than the stress relaxation time for a mate­
rial conforming to the Maxwell-element model.

Another important part of the research is related to the in­
fluence of boundary conditions on the process of dynamic 
stress propagation in a conveyor belt. The case of the propaga­
tion of dynamic disturbances is considered when the boundary 
conditions are set in the form of a dependence that determines 
the relationship between the traction moments of the induc­
tion motor and the speed of the conveyor belt. To tension, the 
conveyor belt, a mechanism with a load at the entrance to the 
section is used. The presented analysis of the propagation of 
dynamic disturbances demonstrates the possibility of the oc­
currence of maximum permissible stresses along the conveyor 
section, which can lead to the destruction of the conveyor belt. 
The magnitude of the stresses is directly related to the magni­
tude of the characteristic acceleration time of the belt.

The obtained research results provide an opportunity to 
study the relaxation processes that are provided in the con­
veyor belt, the material of which corresponds to the Maxwell-
element model.
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Аналіз напруження на стрічці конвеєра 
(модель Maxwell-element)

О. М. Пiгнастий, C. М. Чернявська
Національний технічний університет «Харківський по­
літехнічний інститут», м. Харків, Україна, e-mail: 
pihnastyi@gmail.com

Мета. Для конвеєрної стрічки, матеріал якої відпові­
дає Maxwell моделі пружного елемента, виконати аналіз 
причин виникнення поздовжніх динамічних напружень і 

дослідити особливості поширення динамічних напру­
жень уздовж маршруту транспортування матеріалу.

Методика. Для розрахунку величини статичних і ди­
намічних напружень, що виникають у конвеєрній стріч­
ці, використано апарат математичної фізики.

Результати. Записане хвильове рівняння, що визна­
чає поширення поздовжніх коливань у конвеєрної стріч­
ки, матеріал якої відповідає моделі Maxwell-елемента. 
Отримано вираз для розрахунку швидкості поширення 
пружних коливань уздовж конвеєрної стрічки, частоти 
коливань і довжини їх хвилі. Визначено характерний час 
релаксації збурень. Для рішення хвильового рівняння 
використано метод послідовного наближення. Дана 
оцінка характерного часу прискорення конвеєрної стріч­
ки, за якого відсутні руйнування матеріалу конвеєрної 
стрічки.

Наукова новизна. Полягає в удосконаленні PDE-мо­
делей транспортних систем конвеєрного типу, що вико­
ристовуються для проектування систем управління 
швидкістю руху стрічки при обмеженнях на режими 
управління швидкістю. Показано, що в режимах приско­
рення або уповільнення конвеєрної стрічки ефекти, 
пов’язані з виникненням і поширенням динамічних на­
пружень уздовж конвеєрної стрічки, через характеристи­
ки матеріалу, що відповідають моделі елемента Maxwell, 
є незначними.

Практична значимість. Полягає в тому, що отримані 
результати дозволяють визначити обмеження на режими 
розгону або гальмування конвеєрної стрічки, які запобі­
гають її виходу з ладу і підвищенню зносу. Це відкриває 
перспективи для проектування ефективних систем 
управління параметрами конвеєрної стрічки, нерівно­
мірно завантаженої матеріалом уздовж транспортного 
маршруту.

Ключові слова: конвеєр, розподілена система, регулю-
вання швидкості стрічки, конвеєр, PDE-модель, Maxwell 
element, Hookean element
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