UDC 658.51.012 https://doi.org/10.33271 /nvngu/2021-4/074

O. M. Pihnastyi,
orcid.org/0000-0002-5424-9843,
S. M. Cherniavska,
orcid.org/0000-0002-9438-6965

ANALYSIS OF STRESS IN THE CONVEYOR BELT
(MAXWELL-ELEMENT MODEL)

National Technical University “Kharkiv Polytechnic Insti-
tute”, Kharkiv, Ukraine, e-mail: pihnastyi@gmail.com

Purpose. For a conveyor belt, the material of which corresponds to the Maxwell-element model, to analyze the causes of the
occurrence of longitudinal dynamic stresses and investigate the peculiarities of the propagation of dynamic stresses along the route
of material transportation.

Methodology. To calculate the value of static and dynamic stresses arising in the conveyor belt, the apparatus of mathematical
physics was used.

Findings. A wave equation is written that determines the propagation of longitudinal vibrations in a conveyor belt, the material
of which corresponds to the Maxwell-element model. An expression is obtained for calculating the speed of propagation of elastic
vibrations along the conveyor belt, the frequency of vibrations and their wavelength. The characteristic relaxation time of distur-
bances is determined. The method of successive approximation was used to solve the wave equation. The estimation of the char-
acteristic time of acceleration of the conveyor belt, at which there is no destruction of the material of the conveyor belt, is given.

Originality. PDE-models of conveyor-type transport systems are improved, which are used to design belt speed control systems
under restrictions on speed control modes. It is shown that under the modes of acceleration or deceleration of the conveyor belt,
the effects associated with the occurrence and propagation of dynamic stresses along the conveyor belt, due to the characteristics
of the material corresponding to the Maxwell-element model, are insignificant.

Practical value. The results obtained make it possible to determine the limitations on the modes of acceleration or deceleration
of the conveyor belt, preventing its damage and increased wear. This opens up prospects for designing effective control systems for

the parameters of a conveyor belt, unevenly loaded with material along the transport route.
Keywords: conveyor, distributed system, belt speed control, conveyor, PDE model, Maxwell element, Hookean element

Introduction. Conveyor-type transport systems are widely
used in the mining industry [1]. This is primarily due to the
fact that: a) conveyer is one of the most economic ways of the
material transportation from the extraction place to the place
of shipment; b) the conveyor allows moving the material
through difficult rugged terrain [2]. Transport costs are up to
20 % of the cost of the extracted material at a material load
factor in the transport system of 0.5—0.7 [3]. With an increase
in the length of the transport system and a decrease in the load
factor, the growth of unit transport costs is nonlinear, which
can lead to an increase in costs by several times. To reduce
energy costs, systems for controlling the belt speed [4, 5], the
value of the input material flow [6, 7], combined methods and
methods based on the energy management methodology [8]
are used. The belt speed regulation allows reducing the spe-
cific energy losses for material transportation up to 30 % [9].
Dividing the transport system into separate sections [10] and
using multi-motor systems allow material to move through the
transport system at different belt speeds for different sections
[11], which saves energy. This is of particular importance for
long multi-section transport systems [2]. The speed or input
flow regulation leads to a change in the productivity of the sec-
tion, and therefore to a change in the power required to oper-
ate the conveyor section in standard mode. The presence of
the power switching modes leads to the appearance of dynam-
ic stresses in the belt, which can be the reason of its damage. In
this regard, in the design of control systems that determine the
power switching modes, the issue of taking into account the
limitations associated with the occurrence of dynamic stresses,
which can exceed the limiting value and lead to the destruction
of the belt, is relevant.

Formulation of the problem. Changing the power mode of
the conveyor section leads to a change in the tractive moment,
and, accordingly, to the subsequent acceleration (braking) of the
conveyor belt. For an asynchronous motor with a phase rotor,
the dependence of the traction torque of the electric motor M,,,
on the rotational speed #,,, at the nominal values of the torque

M, and rotational speed n,,, of the electric motor is shown in
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Fig. 1. The process of acceleration (braking) of the conveyor belt
with the material occurs in several stages, each of which is char-
acterized by an abrupt change in the tractive moment of the
electric motor. Such a sawtooth change in the tractive moment
depending on the change in the engine speed (Fig. 1) is the
source of the existence of dynamic stresses in the belt. The pres-
ence of dynamic stresses imposes additional restrictions on the
modes of acceleration (braking) of the conveyor belt.

These restrictions must be taken into account when syn-
thesizing algorithms for optimal control of the flow parameters
of the transport system.

The linear density of the material [y ],(#, S) along the trans-
port route at the time 7 at the point of the conveyor section
with the coordinate S € [0, §,] can be calculated from the rela-
tion [11]

i (t—At,) N

0,(v,8)=(H(2)-H(-G)) g(t—At,)

H(&-G)u(e-0),
where
G=[gla)ydo; t=1/T; &=S/S,;; H(S,L)=H(S);
0

V&) =Y/ Ity 1O =2OT, /Sy 1ty rass
g0 =w,(OT/Ss; 06(t, &) = [1lo(t, $)/[XJomax

The expression 0y(t, &) determines the relationship be-
tween the linear density of the material [y],(7, .S), the speed of
the belt p,(#) and the input flow of the material 1,(7) at the
initial distribution of the material with the density W(S). The
average time 7T, of material passage along the transport route
by the length of the conveyor section S, is taken as the charac-
teristic time of the process. The value [y]jmnax cOrresponds to
the maximum permissible linear density of the material for the
conveyor section. The choice of characteristic values T, S,
[%]omax 1S conditional.

The analysis of the propagation of dynamic stresses in the
conveyor belt is performed for the Maxwell model of an elastic
element (Fig. 2) with the elastic modulus of the element £ and
viscosity 1
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Fig. 1. Mechanical characteristic of a phase rotor induction motor
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Fig. 2. Maxwell element
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The Maxwell elastic element model can be used for con-
veyor belts containing rubber, nylon and polyester [17]. When
the traction load changes as a result of power switching, the
Hooke element is deformed by an amount ,/F, and the vis-
cous element is deformed at a constant speed c,/n. The total
strain g(¢, §) is determined by integrating (1)

(M

G, ©
—L+=0r=¢(1,S); €0,8)=c,/E.
E

With a long time of the presence of stress, the deformation
(¢, §) becomes quite significant. For a constant strain speed
v, = const the solution to (1) has the form

de(t,S
#=vg, I =n/E.

With a long time of the deformation process, the stress in
the conveyor belt tends to a constant value.

The solutions to (1) demonstrate the characteristic behav-
ior of the belt material (Maxwell element) when loaded. To
study the propagation of dynamic stresses in a conveyor belt,
let us construct an equation that takes into account the bound-
ary conditions represented by the relationship between the
traction moments and the speed of the conveyor belt.

Literature review. The properties of the material from
which the conveyor belt is made determine the process of dy-
namic stress propagation. In the article [12], a comparative
analysis of the Voigt-element and Maxwell element models is
given and, using the Lagrange equations, the calculation of
the dynamics of stress propagation along the conveyor belt
for various acceleration/deceleration modes is carried out.
The calculation of the speed modes of the conveyor section
for the Maxwell element elastic element model and the Win-
kler foundation transport system model is presented in [13].
The elastic Kelvin-Voigt element is used in the model con-
taining the Lagrange equations [14] to calculate the belt
stretch curve and velocity curves dependencies. The article
[15] examines the models of the elastic element Kelvin-Voigt
element, the combination of Hookean and Kelvin-Voigt ele-
ment, as well as the combination of two Kelvin-Voigt ele-
ments. Long-wave oscillations in the conveyor belt for the
Hookean element model and the analytical PiKh-model are
studied in detail in [16]. The results of experimental studies
on the mechanical properties of composite materials for the
manufacture of conveyor belts with polyester and polyamide
cartridges are given in [17].

o(t,8) =nv,(1-e/");

Dynamic stress propagation equation. The equation de-
scribing the motion of an element dS at a point S on the belt
with effective mass dm and acceleration du(t, S)/dt has the
form

du(t,S)
dt

The force of resistance to the movement of the belt F, is
the sum of the resistances [16]

FW: FH+ FN+ FSI+FS'

dm=o(t,S +dS)Bh—o(t,S) Bh—dF,,.

The primary resistances Fy assuming a linear relationship
between the resistances and the transported load, are deter-
mined by

dFy=dSfegu(lxlor + (Lxlo(, S) + [x]o) cosdc),

where fy is the coefficient of rolling resistance of the driving
rollers and resistance to indentation of the belt; g,, = 9.81 (m/
s2); [xloc is linear density of the belt; [y]oz is linear load from
rotating parts; 8 is the angle of inclination of the section of the
conveyor. For a conveyor located horizontally, cosd.= 1.

The force Fy, taking into account the influence on the
movement of the secondary resistances, is expressed in terms
of the value of the primary resistances to movement F; (DIN
22101:2002-08)

Fy=(C-1)Fy.
For extended conveyor systems C ~ 1.05. The gradient re-

sistance of the belt and the conveyed material is determined by
the expression (DIN 22101:2002-08)

dF = dSsindcg,([xlo(t, S) + [xloc)-

For horizontally located sections, it is absent, sind. = 0.
For most conveyor sections, it is assumed that the force Fj,
associated with special resistances, determined by the design
of the conveyor, is small Fy <« Fj. Taking these assumptions
into account, let us write the expression for the force of resis-
tance to the movement of the speed in the form

dFy=dSCfeg([xlor + [x]o(t: S) + [x]oo)-

The effective mass dm of an element 4§ at a point § on
the conveyor belt is determined through the effective density
[x].A%, S) of the driving element

dm = [x]At, $)dS; [ xloeAt, S) = [x)or + [x 1ot S) + [xlos

which allows us to write the original equation of motion of an
element d at a point S on the belt in the form

du(t,S) _ Bh  3o(t,S)
dt [X]Oef(taS) aS

Cly&n: (2

Let us introduce the absolute elongation of the conveyor
belt W(t, §) at the time for the coordinate S. The ratio of the
elongation dW/(t¢, S) to the length of the segment S is the rela-
tive deformation of the element

s(t,S):%;’S); e(t,8)~1072, dS>dw(,S).

The speed pu(z, S) of the conveyor belt with the material,
consists of the speed of the belt in equilibrium p, () and the
oscillating part
dW (t,S)

dt

wt,S)=p, (N+ D |naS)es)| <

oW @,9).
o |

dwt,S) ow(,S)

= +u(t,8)e(1,S),

i py w(#,8)e(,S)
whence follows

ow (t,S)
w(,S) zuw(t)+T.
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When the length of a segment dS of the transport route
changes, the effective density [y]or = [%lo,A?, S) changes. Let
the length of the segment change and become equal (dS +
+dWA1, S)). In this case, the effective density [y ]y, will change
and become equal [y]o,r+ Alylo,- Then, for a given section of
the transport route, we have the ratio

dS[xloer= (dS + dW(t, S)) ([ ]oer + Al Joep)-

Neglecting a quantity of the order of smallness dWA[y .,
we obtain

RE,

oW (2,8)/0S|~[0AIXlogr /X oer

which allows the expression for the effective linear density

[X]Oef(ta S) ~ [X]O\uef(ta ‘Sy)(l + 8) ~ [X]O\vef(ta S)a

to be written in terms of the linear effective density [y ]g,.r in
the absence of dynamic stresses. Taking these assumptions
into account, let us represent (1, 2) as follows

ac(att’s)+£0(t,5)=Eaa(t’S); )
n
PW(S)  Bh do(t,S) o,  du, ()

When designing (3, 4), assume that it is unacceptable for
the function o(?, S), (¢, S) to have a large gradient leading to
the destruction of the belt

0o(t,S) < Gc(t,S); 0e(1,S) < 0e(1,S) .
oS ot oS ot

Let us integrate (3) over ¢
o(1,5) £ j o(1,S)dt = Ee(1,5)+6,(S). 5)
n

Case £/m — 0 conforms to Hooke’s law

o(t, S) = Ee(t, S),

from where () = 0. Substituting (5) into equation (4), we
obtain

2 C2(t,S du, (t
0 W(t,S)+ \l,( )Iac(t’s)dt+Cngm+ Hw( ):
or? n as dt
oe(t,S)
=C2(1,S ;
o (158) as

CL(t,8) = BRE/ Xl (1:5),

where C,, is the speed of propagation of disturbances along the
conveyor belt [26]. By integrating the expression

Bh_ ootS)
[y (05)) 05
_ow,S) ow(0,S)
o o

we obtain a wave equation for describing longitudinal vibra-
tions in a conveyor belt

+N~f]\7gmt+ Hw(t)—llw(o)a

OW@S) 1w @S aws) _
or’ f, ot ot o

_ 1) B O-, (0 dp, (@)
==0cg, ( ’ +1] " w (6)
W (t,5)
+ Cj(r,S)T.

Boundary and initial conditions. Let us supplement equa-
tion (6) with boundary conditions (Fig. 3)

Hy, (l)//lsl ‘/u (l)/ao
1 /

\ [l

\

. K
04 / \an
0.2
~N
\
0 1 2 3 4 ifi, S

0.8

0

Fig. 3. Conveyor belt speed and acceleration

owes)| _ T, . owes)| _ T
oS lso EBR  8S |s_s, EBh
The tension force 7, is determined from the condition
T+ Ts=Ty Ty=kTs,
under dynamic load
oW (1,0)

=M, g +M, 6 ———,

0 w8m w atz

where M,, is the weight of the suspended load, which ensures
the pretension of the belt. For transport conveyors, the drum
loss factor “A” is k, ~ 1.03. Using the ratio

oW (1,0)
Yoo
let us write down the first boundary condition

waws)| kM, [ 62W(t,0)]

s

Ty Ty =M, g, + M

s

as |, k+1EBH ST o

If the acceleration of the suspended load is small and, as-
suming, k,/(k;+ 1) = 0.5, the boundary condition can be rep-
resented in the form

PW(,0) Mg,
or? 2EBh’

To construct the second boundary condition that deter-
mines the tension force 7 of a conveyor equipped with an
asynchronous motor with a phase rotor, we will use the rela-
tionship between the tractive torque and the angular speed of
rotation, for a given mechanical characteristic of the electric
motor (Fig. 1). For the range n,,,/n,, € [0.0; 0.4] let us define
the relationship between the tractive torque and the rotor
speed with the mechanical characteristic shown in Fig.1

M

n
g 4=1.6,b=1.0.
M, n

eng0 eng(0

-0

Let us represent the last equation in the form

— t
Tl Tz :a_bu\u(); TI_T2:Meng/r, 7)
MengO/r Ho

where the standard speed of the belt p, = 7,,,02nr corresponds
to the standard speed of rotation of the rotor n,,,, ¢ with a
drum radius 7. The tensile force 7 is determined from the sys-
tem of equations

T =Tyexplk,0), T,=k.T,
I=T,+ FH(2-3) + FN(2—3) + Fw(2—3) > (®)
=T+ FH(4—1) + FN(4—1) + Fw(471)
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where k;, is the coefficient of adhesion between the drum and
the belt. The values of these functions for the intervals speci-
fied by the points of application of forces T}, 7T, T3, T, are
determined by the expressions

Fins=Safcg&n(llor + [xloc)s  Fnaz=(C—=1)Fips;

Fw23

1= t—,lia

j“(mok +Dtloc )dS = £, @([dor + Utloc ) S
Fyp=Fyn+fc&n I [x1o (2, 8)dS;

Fyy=(C=DFpy;  Fou= [x1o(2,8)dS.

w23+.[

During the characteristic time of acceleration of the con-
veyor belt AT, material travels a path ATy, < S, which makes
it possible to consider the value M as slowly changing over time

Sd
[ Ixly(1,8)dS = M;
0

Since the speed of the belt is much less than the speed of
propagation of disturbances, it follows

t S 1
ud d“. o
! { L a(.8)dSd ~ M { £, (0t.

The solution to system (8) gives an expression for the ten-
sile force 7

exp(k,o.)
exp(k,o) -k, ’

Using (7), let us obtain the second boundary condition

T :(ksCFH23+k Fyo3 +CFyq + w41)

CLAUTY ©)

oS g5 EBh

_MengO exp(kba) a . _4a, b

v rexp(ko0)-1EBR " ay,

Boundary condition (9) depends on the linear speed of ro-
tation of the drum p,, (7). To determine the magnitude of the
speed p,,(7) let us use (7). Let us introduce the coefficients

o = k,+1 exp(k,0)
"' EBh exp(k,0) -k,
c :L exp(k,o)
"2 EBh exp(k,o) -k,
k,+1 exp(k,o)
"'~ EBh exp(k,0)—k,
1 exp(k,o)
2 _mexp(kba) —k,
g =3 "%, p b,
P d,+d,,

e, ([X]OR +[tloc )Sd

GeguM;

(Ior +xloc ) S,

5

k) b - ’
¢ dwl + dw2
then (9) takes the form

dp, (1)

0)=0.
o m, (0)

=ay—byp,, (1),

For long conveyor systems, during the characteristic ac-
celeration (deceleration) time #, the mass of the transported
cargo is a quasi-stationary value, which allows us to count a, =
= const, b, = const during the acceleration process. The solu-
tion to the last equation has the form

b, (=7 P A
0

a a,—c, —¢C a Cf-g
MS’:HW(OO)ZJZ w wl w2 =—p,— Z m
o

by b, b

The characteristic acceleration time during which the con-
veyor belt with the material reaches the value of the standard
speed p, at the standard value of the traction moment M,,,,
can be estimated by the value

Mo b1

. 0|k - ’
> ro 2, M,

M, =2([x)or + [x)oc)Ss+ M.

The solution w,,(#) is shown in Fig. 3. The conveyor belt
reaches speed p, for time 7 = 54,. The acceleration of the tape
has a maximum value in the interval 7 € [0, #,]. After a period
of time 7 = 5¢, the movement of the belt becomes uniform.
There is no acceleration at belt speed p,. If the speed p, is less
or more than the required value of the standard speed of the
conveyor line, then a change in the value p, can be achieved
through a decrease or increase in engine power as a result of
switching the power mode (Fig. 1). Let us supplement equa-
tion (6) with the initial conditions

t'=p

ow(0,8) 1 ( J
as EBhk L
= ks M_,_ aw_bwu (t)— ks ngm i ;
k,+1 EBh v k,+1 EBh JS,| |
was)| _,
ot i .

For positions § = 0, § = S, the initial conditions corre-
spond to the boundary

awes)| 1|  ewes)| 1|
as |,S:£0*E3h|,:0’ oS |0 EBh|

d

Analysis of the solution of the dynamic stress propagation
equation. When constructing the solution, we will assume that
the characteristic time of the process 7, is much less than the
time #,, during which a significant decrease in tension occurs
(Maxwell element)

g, =t,/thx 1, tel0,t,].

If this condition is not met, the conveyor belt within a
short operating time would receive a significant elongation,
which would lead to a stop of the conveyor. Let us also assume
that the material is uniformly distributed along the transport
route with density [y],,.-and the speed of the conveyor belt at
the initial moment of time is equal to zero. Then the dynamic
stress propagation equation (6) can be represented as

W (1,S) o PW,S) duw(t)
or? v 582 dt

Cfcgm:
(10)
1 ow(@,S ()
_—gw[ta(;)+Cfcgmtt+u ]

w w w

with boundary conditions

oW (1,S)]
oS

k, M( 62W(t,0)]_

o TR EBn 5 o

oW (t,S)

as =a,—b,p, (1),

S=S,

and initial conditions

oW (0,8) _ K, ngM(l_j .5

S awws)
oS k+l EBh | S,) 'S, o

=0;
1=0

ISSN 2071-2227, E-ISSN 2223-2362, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2021, N 4 77



By =521 ). 11, (0)=0.
0

Let us represent the solution of equation (10) in the form

WAL, §) = Wi(t, S) + Wi(t, S) + ...+ W,(1,.5).  (11)

Substituting series (11) into equation (10) and equating the
coeflicients at the same powers of the parameter ¢,,, we obtain
the system of equations

PW,(1,S) ., W, (1,S) dp, (1)
5 _C2 0\ =—C] — kd 5 12
atZ w0 6S2 ngm dt ( )
W(,S) e OW(1,S)
or vooas?
1 oW, (t,S) )
=00 g, ———;
oo T
aZI/Vk(t’S)_CZ azl/Vk(t’S): 814/,"1([’5‘) k=2.n.
o NPT tot

Let us dwell on the solution of the first equation, which is
determined by the zero approximation in the parameter ¢,,. Let
us look for a solution in the form

Wy(t, S) =Vt S) + M, S); (13)
2

Vos) = Mubng o oK Mutn | S
k,+1 EBh v k,+1 EBh )25,

The function V(z, S) determines the static deflection of
the belt in the absence of dynamic stresses (undisturbed state
of the conveyor belt). The function V(z, S) is the deviation
from the undisturbed state. Let us introduce the notation

_ 1 MengO eXp(kbot)
" EBh r (exp(kbot)—l)’
A — i\) ks ngm _ ks ngm
"\, Jk+1 EBh  k+1 M,  exp(k,o)
r (exp(k,o)—1)

taking into account which, let us write down the expression for
the magnitude of stresses in the undisturbed state

iaVS(t’S)ZAO 1_£ + a_bh(]_efbot) i
a GAY Sd 2% Sd

w

A

Function graph Q(#/1,) Q(t/ tu)

ot s

aW

—a-bPs -y,
S=5, Ho

characterizing the stress at a point § = S, for values p,/p, =
={0.1;0.2;0.3; 0.4} npu a = 1.6, b= 1.0 (7) is shown in Fig. 4.
The relative stress Q(#/7,) decreases exponentially, reaching a
constant value according to equation (7). The relative stresses
shown in Fig. 4 for the undisturbed state correspond to the
range of variation of the belt speed e/ Hengo € [0.0; 0.4] and
the magnitude of the traction moment M,,,/M,,,, € [1.6; 1.2].

Substituting solution (13) into the equation for the zero ap-
proximation g, (12) and taking this into account

dp,, (1)

Ws(t.S) _ k Mg, |, b () k, M,g,\S .
as k,+1 EBh vOYES ko+1 EBh )S,”

oW(1,S)

s

2
62V5(t,S)~ Sd/tu d“w
a | C dt

y0

(’/ ’#)

1

1,6

Hst _

Ho
1,5 T —
Hst _02

JLNSENE

\ Hst _03

Ho
1,3 \

Hst _04
\ Ho

0 2 4 6 8

1,2
tft, 10

Fig. 4. Relative stress of the conveyor belt in the absence of dy-
namic stress

we obtain the system of equations for the function ¥z, .S)

62V(I,S): o2 oW (t,S)
or? Vo 882
with boundary conditions

, (14)

WS _ kM, V@0 Vs
oS s, k+LEBh o ° oS |,
and initial conditions
2
aV(O,S)ZO; v ,S)| . s
as a |, 25,

When deriving (14), it was assumed that the material is
uniformly distributed along the route (C,,, is constant)

2
Vs(1.S) _ 0Ws(.S) [ Su/ty | duy.
o8? or? c dt

w0

2
Coo

The relationship S/7,for the various conveyors in operation
is presented in the Table. The speed of propagation of distur-
bances was estimated as C,,, = 2000 m/s. This implies

(Sd/tp/cw())z =~ (60/2000)2 ~ 0001

Let us first of all dwell on the study on the natural frequen-
cies of stress oscillations arising in the conveyor belt. To do
this, let us find a solution to the problem posed, presented in
the form

W1, S) = T()X(S).

Substituting ¥z, S) into (14) and using the boundary con-
ditions, we obtain after separation of variables for the ampli-
tude of standing waves

X
aX,S) +A2X (85)=0;
ds?
Table
Conveyor belt acceleration mode time
Sp | 1o | Sa
Conveyor name nd1 ' p

Conveyor at the Zimbabwe Iron & Steel Co | 15600 | 500 | 31.2

Conveyor C3, Indo Kodeco System Layout 8600 | 250 | 34.4

North Shaft decline conveyor 1350 30 | 45.0
Experimental conveyor [ 18] 3620 | 60 | 61.0
Conveyor CV002B, El Brocal [19] 2781 80 | 34.8
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X,(S) = sin(,S,)(sin (1,S) + B, cos (1,,5)),

with boundary conditions

XS a2 @0y ¢=c2y Ko M,
as |y, "k, +1EBh
X, _
aS |,

From the boundary conditions let us find
I=-cph,By;  ctg(h,Sy) = By
tg(AySa) = — ol (15)
from where
X,(S) = cos(r,S = 1, Sa).-

The orthogonality conditions for the functions X,,(.S) take
the form

Sd
I X, (85X, (S)MS +¢,X,(0)X,,(0)=0;
0

Sd
[x2]= [ X2(8)dS +¢,X20).
0

Let us seek a solution to the problem (14) in the form of an
expansion along the axis .§

VesS)= iTn(Z)cos(kny), y=8-S5,,

n=1

while considering time 7 as a parameter. The value A, is found
from the solution of the transcendental equation. Using the
initial conditions

ov(,S)

s = —xniT”(O)x” sin(1,)=0;

=0 n=1

§2 &.dT.(0)
=b,a,——=» —L—=cos(L,y),
whs, 2y costh)

v (t,S)
ot

=0 n=1

let us define

dr,(0) 1 ¢

T.(0)=0; = cos(\ +8,)dy.
L(0) a ) Ay +S,)dy

For the case where the weight of the gravity weight is very
large compared to the weight to be moved

M., > [x]oyernSas
fair equality
coh, > 1,
which allows conditions (15) to be written in the form
ctg(r,S,) — 0.

From the last relation, it follows
i
B =0, A =—(n-1/2), X (0)=0.
n n Sd( / ) n( )

The resulting boundary condition corresponds to the case
of rigid fixation at a point §'= 0. The solution X,(5), V¢, S) for
the considered case will be sought in the form

X,(8)=sin(,8); V(£.5)=3 T(0)sin(h,S).

n=1

where the initial conditions for 7,(f) are determined from the
system of equations

VO _,,

S| &dT,0)
as ot -2

——=sin(A,,S).
|t:0 n=1 !

Using the Fourier series expansions, let us obtain

dT,(0) _ (G
dt _bWGOSd[nn—n/z (nn—n/z)zj'

T,(0)=0;

The solution to the equation for given initial conditions
has the form
T,(1) = ¢, sin(o,7);

0,=C OL n—l ; cn=idT”(0).
s, 2 o, dt

n
The solution that determines the dynamic tension of the
conveyor belt is presented in the form

V(1.5)= ¢, sin(w,sin(,S).

n=1

The total tension in the conveyor belt is determined by the
expression

oW, (1,8) oV(t,S) N v @,S)
oS oS as

Using the notation A4,, a,, a, let us consider the propaga-
tion of dynamic stresses for n = 1.

_a WS _ B G o, 0)cos0,8) +
Aa, 0S| A
a

Ceva| @b Ry o e
+(1 a>+( R (1-exp( r))]a,

0(v,8)=

B,=0.6400 Ha, o 5
CwotH [Th S,

O\)WZ(D]l‘uz 157C‘V0t11/Sd; 7\.‘4,:7\,15’“1z 1.57.

An estimated calculation shows that for the acceleration
modes presented in the Table, 4, > B, and, therefore, the dy-
namic stresses in the conveyor belt will be significantly less
than the static stress. Estimation of the characteristic accelera-
tion time at which A, = B,, is determined by the expression

t
;oT=—
lu

ULELVH T
AO C\yO Ho
For the values S, = 10 000, C,,, = 2000, 4, = 10, b = A,,
a = 2.54,, py/1p = 0.4 it turns out 7, = 0.1, ,, = w7, = m, A, =
=1/2, and, accordingly

t

0,(1,&)=1+&-0.4(1-exp(-1))E+ sin(m)cos[;é].

When S = §,, the function Q,(t, &) goes to the function
0(1)/A, (Fig. 4)

Oi(t, 1) ~ (2 - 0.4(1 — exp(1)))E.

The dynamics of the stresses in the conveyor belt for the
case determined by the function Q,(t, ) are shown in Fig. 5.
A family of curves characterizes the magnitude of the stresses
in the conveyor belt at different points in time. At By/A,= 1 the
stress along the conveyor belt does not exceed the maximum
stress value Q,(0, 1) at the conveyor belt starts. In subsequent
time intervals, a decrease in the stress value in the conveyor
belt occurs. The maximum amplitude of stress fluctuations is
achieved at the beginning of the conveyor belt & = 0, which can
lead to belt sagging effects.

An increase in the ratio By/A, leads to the occurrence of
stresses with a maximum value in the middle of the transport
section. The presence of stresses with a maximum value exceed-
ing the stress value Q,(0, 1) at the time t = 0 for the boundary
point of the conveyor belt & = 1, is shown in Fig. 6. The analysis
of the function Q,(r, &) allows us to conclude that when the belt
is accelerated, the most dangerous is the initial moment of ac-
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Fig. 5. Relative stress of the conveyor belt in the presence of dy-
namic stresses By = A,

7,
3 01(z.¢)
7=0.5
2.5 /’025 ——
7=0.
" -
=00 /
15 —
/
1 r7=1.0
0 0.2 0.4 0.6 0.8 1¢£

Fig. 6. Relative stress of the conveyor belt in the presence of dy-
namic stresses By =1.25A4,

celeration, which is determined by the gap t € [0, 1[. The am-
plitude of longitudinal vibrations for subsequent periods of time
t e [1, 2[, T € [2, 3]... decreases, which is associated with an
increase in the speed of the belt.

An estimate of the decrease in the magnitude of stresses in
the transition to the standard value of the speed of the belt p,
can be obtained from the analysis of the family of dependen-
cies shown in Fig. 7. For the indicated points in time, there are
no dynamic stresses in the conveyor belt. The stresses in the
conveyor belt are set by the expression

0i(7, &) = 1 +£-0.4(1 — exp(-1))E,

which is written taking into account the fact that for the time
t=0, 1, 2,..., there are no dynamic stresses in the conveyor
belt, sin(nt) = 0. A significant decrease in the magnitude of
stresses occurs in the initial period of acceleration of the con-
veyor belt. T € [0, 1].

Conclusions. The analysis of the causes of dynamic stresses
in the conveyor belt, the material of which corresponds to the
Maxwell-element model, is carried out. The value of the char-
acteristic times of the process is determined, for which the in-
fluence of material properties is significant. Using the method
of successive approximations, a system of equations has been
developed that makes it possible to analyze the occurrence of
dynamic stresses, considering the specific properties of the
material. The propagation of dynamic disturbances, taking
into account the features characteristic of the Maxwell-ele-

01(z.¢)
5
1'/:0 7=1
2
/// r=8
15 =
1
0 0.2 0.4 0.6 0.8 1¢

Fig. 7. Relative stress of the conveyor belt in the presence of dy-
namic stresses By =1.254,

ment model, can be investigated in detail for the steady-state
mode of operation of the conveyor belt. In this case, the char-
acteristic time of the process significantly exceeds the charac-
teristic time of acceleration or deceleration of the conveyor
belt. This allows us to conclude that when analyzing the dy-
namic stresses arising in the period that determines the pro-
cess of acceleration or deceleration of a conveyor belt, the ef-
fects associated with the behaviour of a material whose prop-
erties correspond to the Maxwell-element model are insignifi-
cant. For the time interval corresponding to the acceleration
time of the conveyor belt, when analyzing the causes of dy-
namic disturbances, the Hooke element model can be used
with a sufficient degree of accuracy. The acceleration time is
significantly shorter than the stress relaxation time for a mate-
rial conforming to the Maxwell-element model.

Another important part of the research is related to the in-
fluence of boundary conditions on the process of dynamic
stress propagation in a conveyor belt. The case of the propaga-
tion of dynamic disturbances is considered when the boundary
conditions are set in the form of a dependence that determines
the relationship between the traction moments of the induc-
tion motor and the speed of the conveyor belt. To tension, the
conveyor belt, a mechanism with a load at the entrance to the
section is used. The presented analysis of the propagation of
dynamic disturbances demonstrates the possibility of the oc-
currence of maximum permissible stresses along the conveyor
section, which can lead to the destruction of the conveyor belt.
The magnitude of the stresses is directly related to the magni-
tude of the characteristic acceleration time of the belt.

The obtained research results provide an opportunity to
study the relaxation processes that are provided in the con-
veyor belt, the material of which corresponds to the Maxwell-
element model.
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AHajii3 HanpyKeHHs1 HA CTPivlli KOHBe€Epa
(moaea» Maxwell-element)

0. M. Ilienacmuii, C. M. Yepnascoka
HauioHanbHMit TeXHIUHUI YHIBEepCUTET «XapKiBChbKHUI TO-
JITeXHIYHUI iHCTUTYT», M. XapkiB, YKpaiHa, e-mail:
pihnastyi@gmail.com

Mera. /1 KOHBEEPHOI CTPiUKU, MaTepias SIKO1 BilMOBi-
nae Maxwell Mozeni py>KHOTO eJIeMeHTa, BUKOHATYU aHaJi3
TPUINH BUHUKHEHHS TTO3I0BXHIX TMHAMIYHUX HATIPYKEeHb i

NOCTIAUTA OCOOJMBOCTI MOUIMPEHHS AMHAMiIYHUX Hampy-
JKEHb Y3/I0BXK MapIlpyTy TPAaHCIIOPTYBAaHHS MaTepiamy.

MeTtoauka. JIyisi po3paxyHKy BeJIMUMHU CTAaTUYHUX i AU-
HaMiYHUX HAIPYy>XeHb, 1110 BUHUKAIOTb Y KOHBEEPHI CTpiu-
11i, BAKOPUCTAHO anapaT MaTeMaTU4YHOI (hi3UKU.

PesympraTin. 3anucaHe XBUJIbOBE PiBHSHHS, 1110 BU3HA-
Yyae MOIIMPEHHS MO3I0BXHIX KOJIMBaHb Y KOHBEEPHOI CTPiy-
KM, MaTrepial sikoi BimmoBimae momeni Maxwell-enemeHTa.
OTpuMaHO BUpa3 [JIsl PO3PAaXyHKY HIBUIKOCTI MOIIUPEHHS
MPYXHUX KOJMBAaHb Y3[I0BX KOHBEEPHOI CTPiYKH, YaCTOTHU
KOJIMBaHb i JOBXWHU iX XBWji. BU3HaueHo xapakTepHMit yac
penakcauii 30ypeHb. i pilleHHS XBUJIBOBOTO PiBHSIHHS
BUKOPUCTAHO METOJ IIOCiZOBHOro HaOmmxkeHHs. JlaHa
OIliHKA XapaKTePHOTO Yacy MPUCKOPEHHS KOHBEEPHOI CTPiu-
KW, 32 SKOrO BifICYTHi pyiiHYBaHHSI Marepiajly KOHBEEPHOL
CTpIUKHU.

Haykosa noBu3na. [losisirae B ynockoHasienHi PDE-mo-
niesiell TPAaHCTIOPTHUX CUCTEM KOHBEEPHOTO TUITY, IO BUKO-
PUCTOBYIOTbCSl JUISI TMPOEKTYBAaHHSI CUCTEM YMpPaBJIiHHS
LIBUAKICTIO PYyXy CTPiuKM TMPU OOMEXEHHSIX Ha PEeXUMU
yrpaBaiHHS WBUAKICTIO. [TokazaHo, 1110 B pexXrmax Mpucko-
peHHs1 a00 YIOBIIBHEHHS KOHBEEPHOI CTPiUKM e(heKTH,
MOB’513aHi 3 BUHUKHEHHSM 1 TOIIUPEHHSIM IUHAMIYHUX Ha-
MPYXEHb Y3[I0BX KOHBEEPHOI CTPIYKM, Yepe3 XapaKTePUCTU-
KU Martepiaiy, 110 BiMOBinaloTh Mojei eaemeHTta Maxwell,
€ HEe3HAYHUMU.

IIpakTiyna 3HaymMicTb. [lonsirae B TOMy, 1110 OTpUMaHi
Pe3yIbTaTH JO3BOJSIIOTh BUBHAYUTH OOMEXEHHS Ha PEXXUMU
pO3roHy a0 rajJbMyBaHHSI KOHBEEPHOI CTPiUKHU, SIKi 3ar100i-
raroTh 11 BUXOAY 3 Jiady i MiABUILEHHIO 3HOCY. Lle Binkpusae
MEePCIEeKTUBU U1l TPOEKTYBaHHS €(hEKTUBHUX CUCTEM
yIpaBJliHHS TlapaMeTpaMy KOHBEEPHOI CTPiUKU, HEPiBHO-
MipHO 3aBaHTaXKEHOI MaTepiaJloM Y3IIOBX TPaHCIIOPTHOTO
MapIipyTy.

KiniouoBi cioBa: kounseep, posnodinena cucmema, pecynio-
6aHHs weuokocmi cmpiuxku, xoneeep, PDE-modearv, Maxwell
element, Hookean element

Recommended for publication by H. Ye. Filatova, Doctor of
Technical Sciences. The manuscript was submitted 02.02.21.

ISSN 2071-2227, E-ISSN 2223-2362, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2021, N 4 81





