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Defining the limits of application and the values 
of  integration variables for the equations of train movement

Railway transportation is an integral part in the transport infrastructure of our country. They cover passenger and cargo trans­
portations by Ukrzaliznytsia, industrial enterprises, including transportation of the mining sector, which is characterized by heavy 
loads on the traction rolling stock due to large gradients of the track profile. Railway transport management is always preceded by 
traction calculations, the center of which is to solve the equation of train movement.

Purpose.To determine the rational values of the variables in solving the equation of train movement, as well as relevant limits 
in their applicability.

Methodology. To achieve the purpose, methods of system analysis, nonlinear programming, numerical methods for solving 
differential equations, namely the classical, Runge-Kutta-Feelberg, and Rosenbrock methods, are used. Computational accuracy 
was verified using simulation methods and compared with experimental data.

Findings. The results of the research involve increasing the calculating speed when solving the equation of train movement 
without loss of accuracy, which allowed using the proposed method in on-board systems of locomotives.

Originality. During the research, new scientifically grounded results were obtained that solve the scientific task in improving the 
energy efficiency of train operation, and are of great importance for railway transport. The obtained results constitute the original­
ity, which consists in determining the rational limits of applicability and the value in a step of integration variables for the equations 
of the train movement.

Practical value. The research results allow reducing the cost of energy consumed by hauling operations due to the promt recal­
culation of rational control modes when changing the train situation.
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Introduction. Increasing the level of automation is one of 
the directions in the railway transport development, concern­
ing various components of the railway automation systems 
both in our country and abroad [1]. At the same time, the vital 
task is improvement of on-board locomotive control systems 
in order to increase the safety of traffic, effectiveness of the 
locomotive control in general, enhancing the working condi­
tions for the locomotive brigade, etc.

The tasks that involve calculating the parameters of the 
bodies motion, in most cases, are reduced to the integration of 
differential equations. The role of numerical methods for solv­
ing differential equations in such engineering and scientific 
problems is not only necessary, but also obligatory.

Solution of set tasks in accordance with all rules of math­
ematics, physics and mechanics in some cases may not corre­
spond to the safety of transportation, comfort of passenger 
transportation, criteria of energy efficiency, etc. Obviously, the 
problem of operational reliability and optimality of transporta­
tion is also common to all methods of calculating the train 
movement and should be solved in traction calculations. The 
specified requirements and approaches facilitate the solution 
of the task and are fundamental to any of the listed methods 
for calculating the train movement.

If among several forces there are speed-dependent ones 
and they determine the motion of a system, it is impossible to 
calculate the parameters of motion by methods and techniques 
of classical mechanics, since these forces change in motion 
and depend on speed themselves.

The above tasks can be solved only by methods of integra­
tion of the differential equation of motion.

All main forces that determine the train movement are set 
in dependence on speed. Therewith, additional resistance 
forces from track gradient and curvature also affect the speed 
of the train, and the degree of impact depends on the combi­
nations of elements in the track profile and their length.

Calculation of the trajectories is the most important task in 
the simulation of dynamic systems, algorithms of which pro­
vide time as a continuous quantity. The aim of the algorithm to 
solve differential equations is approximation of a system be­
havior with continuous time. Since computing at digital calcu­
lations is inherently discrete in terms of time, the integration 
algorithm performs the simulation of a system, in which the 
time is considered to be continuous, a system with discrete 
time. The actual system, obtained in such simulation, is not a 
differential equation. Often, this is a complex system with dis­
credited time. The integration algorithms are characterized by 
the fact that they reflect the same differential equation in dif­
ferent systems with discrete time.
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Modern mathematics provides extremely powerful and 
universal research methods. Practically every concept in 
mathematics, every mathematical object, starting from the 
concept of a number, is a mathematical model [2]. When con­
structing a mathematical model of an object being studied, 
those peculiarities, features and details are distinguished, 
which, on the one hand, describe the object to the full extent, 
and on the other, admit some mathematical formalization. 
This means that when there is a mathematical description of 
an object, its features and details one can assign mathematical 
concepts into a certain correspondence: numbers, functions, 
functionals, matrices, etc. Then connectivities and correspon­
dences detected and predicted in the object under study be­
tween its individual parts and components can be written 
down using mathematical relations: equalities, inequalities, 
equations. As a result, we have a mathematical description of 
the investigated process or phenomenon, that is, its mathe­
matical model. However, the constructed mathematical mod­
el must meet such requirements as universality, adequacy, ac­
curacy, efficiency, etc.

Universality characterizes the completeness in showing 
the properties of a real object being studied during simulation. 
For the model of the train movement, universality is expressed 
in the possibility of its use for various sections profiles, varia­
tional masses of the train formation, series of locomotives, etc.

The adequacy of the train movement model shows the 
mapping of the desired properties of an object, namely, tech­
nical-economic characteristics, with an error not higher than 
the specified one.

Accuracy can be estimated by the coincidence values in the 
characteristics of a real object and the corresponding values of 
the characteristics obtained by the models. Accuracy can be de­
termined by comparing the results of a real trip with calculated 
ones: speed gauge data, energy consumption, travel time, etc.

Economical efficiency is determined by the cost of memo­
ry resources in the electronic computer (EC) and the time for 
implementation and operation of the model. For models that 
operate on stationary EC, economy is not a limiting factor 
comparing with the models that are software-monitored for 
operational decision-making (on-board), because they have to 
provide information concerning the change in such factors as 
traffic signals, current traffic speed, electric machines capaci­
ty, overheating temperature, etc.

The usage of mathematical models to describe physical 
processes and objects is universally accepted and in demand. 
To construct a model based on physical laws and calculate the 
exact value of any magnitude, it is reasonable to use, at any 
time, a deterministic model. However, due to certain unknown 
factors such as technical condition and technical-economic 
parameters of the traction rolling stock, net train resistance, 
the situation on a track, etc., this task cannot be classified as 
deterministic one. Consequently, the mathematical model of 
the train should take into account the probabilistic parameters 
of the fact that variables in the equation of train movement will 
lie in a certain definite interval. Therefore, this model must be 
classified as stochastic one.

Mathematical simulation while in operation of traction 
rolling stock is performed at the stages of designing the loco­
motives both in general and in separate assembly units, opera­
tion, including simulation of trains movement, technical 
maintenance [3], and others.

In the simulation of the train movement, the latter is con­
sidered as a dynamic system, which operates in steady state 
only at separate intervals of time. Transient processes lead to a 
change in all internal parameters of the system, including 
power, current, fuel consumption, etc., and some external 
ones: kinetic energy of the train, resistance to movement, etc. 
[4]. Therefore, the mathematical model of a train is dynamic 
by nature.

Graphical methods for traction calculations involve the 
use of discrete values in some variables, but the value of phase 

coordinates does not always meet these requirements. The nu­
merical integration of the train movement equation provides 
determining the phase coordinates at particular points of time 
or a track. The accuracy of the definition increases with de­
creasing track Ds and time Dt intervals. But at the same time, 
such a requirement as economical efficiency worsens. Conse­
quently, in order to improve the accuracy of the calculations, 
the model should correspond to a continuous type.

Literature review. In traction calculations, the following 
methods are used to solve the differential equation of the train 
movement: analytical, graphical, numerical and machine. The 
common theoretical basis for these methods is that they involve 
solution of the equation for the train movement in the form of 
Cauchy problem. This implies the use of certain theoretical ap­
proaches known in technical cybernetics, mechanics and ap­
plied mathematics. They include linearization rules for nonlin­
ear functions; the principle of small deviations of the variables 
of the object state; calculating the current coordinates of a 
moving object by the observability method by Thaler J.

The graphical and constant speed methods are used for 
calculations that do not require high accuracy and do not pro­
vide the definition of energy-efficient modes in driving the 
train.

A characteristic feature of the analytical method is the 
large amount of calculations, but it provides high precision 
under certain conditions. For a more detailed review, the fol­
lowing methods for solving the equation of the train move­
ment with the definition of energy-efficient modes can be 
identified. They are:

- variational calculus;
- Pontryagin’s maximum principle;
- nonlinear programming;
- dynamic programming;
- vector optimization and others.
It is advisable to use these methods in accordance with 

certain factors that affecting the train movement [5].
One of the methods most often used to solve the equation 

of train movement is Euler’s method. The set task in it is find­
ing a program for changing the speed v(t), which would pro­
vide a given train movement along the section s, that is, the 
definition of the integral

( )= ∫
0

,
T

s v t dt

where s is the section length; t is the period (time) of the train 
movement; T is the total period of the train movement along a 
section.

Optimization of the equation with account of the moment 
equilibrium on the moving wheel sets

μ = + μ ,ov

where mo is the moment of train rolling resistance, reduced to the 
wheelsets, is performed by finding the minimum integral value

( )= μ = + μ∫ ∫ 
22

0 0

.
T T

oQ dt v dt

The condition is that the initial equation s must comply 
with the Euler’s equation

∂ ∂
- =

∂ ∂ 
0,l d l

v dt v
where l is auxiliary Lagrange function, which is from the ex­
pression

( )= + μ + l
2 ,ol v v

where l is Lagrange multiplier.
After solving the equation, we obtain the Euler’s equation 

in the form
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- l = 0.v

With the substitution of the initial data, we obtain the 
equation of the optimized locomotive control program

( )  
= - 

 

2

2
6 ,s tv t t

TT

where T is train movement time.
Proceeding from this, the parabolic train speed control 

program is the optimal one.
During the operation of traction rolling stock in real con­

ditions, traction characteristics of diesel locomotives, electric 
locomotives and multiple units do not allow realizing the 
speed change curve in trapezoidal form. Therefore, the opera­
tion of electric traction machines should be used as a nonlin­
ear acceleration limitation.

This method has the following disadvantages. They in­
clude a large number of limitations, imposed on the train 
movement in real conditions. Transient processes and opera­
tion modes of power transmission elements must be consid­
ered by additional algorithms. The variables of the accelerat­
ing-retardation effort caused by the track profile are difficult to 
consider when solving the equation of the train movement.

The basis of the method of dynamic programming in the 
theory of hauling operations is Bellman’s optimality principle, 
according to which the reduction of energy consumption for 
hauling operations is performed by minimizing the value of the 
objective function, describing the capacity control in a loco­
motive. To simplify this task, the number of limitations on the 
equation of train movement increases, which leads to a de­
crease in the number of iterative approximations.

( ) ( )
=

= D →∑
1

, , , , min,
n

i i i i
i

f v t p e v t p

where p is the capacity factor of the traction rolling stock; n is 
the number of iterative approximations in the solution for the 
equation of train movement; Dei is energy resources consump­
tion for i solution spacing (step).

The objective function at dynamic programming for ener­
gy cost reduction on hauling operations is dependence

	 ( ) ( ) ( )- - - = + D 1 1 1
min, , , , ,i i i i i i i i i

i

f v t f v t e v t p
p

where fi - 1(vi - 1, ti - 1), fi(vi, ti) is minimum of the values rela­
tively for the (i - 1)th and ith solution spacing (step).

When applying the time limits of the train movement along 
a section in the form of integral dependence [6, 7]

= ∫
0

,
ks

ï
s

dst
v

the objective function involves the introduction of Lagrange 
multiplier l. This partially simplifies the task of energy cost 
reduction

( ) ( ) ( )- - = + D + l 1 1
min , , .i i i i i i i i

i

f v f v e v t p t
p

When solving the equation of train movement by the dy­
namic programming method it is expedient to use the method 
of finite increments.

There are deficiencies in this method. They are as follows: 
when the integration step is reduced, the number of options for 
solving the equation increases exponentially, which leads to 
diseconomies of the model and necessitates some amount of 
computer time. This raises certain limitations in the applica­
tion of this method in on-board systems of operational deci­
sion-making when changing the train situation during traffic. 

When comparing solutions in the equation of train movement 
depending on expenses of energy resources consumption from 
the time of a train q(t) is possible only at certain discrete points

+ -

+ -

  
 
  

1 1

1 1

...
,

...
i i n n

i i n n

t t t t
q q q q

which makes it impossible to determine the mode of driving 
that corresponds to the intermediate values.

When solving the equation of train movement according to 
the method by L. S. Pontryagin, the principle of maximum is 
used. This method is used in systems that provide high-speed, 
including in on-board software and hardware complexes. The 
algorithms of the Pontryagin method are based on the method 
of dynamic programming.

In problems of the locomotive traction theory at solving 
the equation of movement, a set of control impacts is deter­
mined from the tolerance region, which consists of vector 
piecewise continuous function u(t), defined at a certain time 
interval

t0 ≤ t ≤ t1,

in every time moment from U area. Problem statement is re­
duced to the choice of such control u(t)* from a set of control 
impacts from the admissible region that reset the phase point 
from the position x0 into x1, which minimizes the functional

( ) ( )  → ∫
1

0

o ,  min.
t

t

f x t u t dt

To solve the equation of train movement, we set a system 
of equations

( )

( )


= 

h 
= 



= 


,

p ude
dt
ds v
dt

R udv
dt Q

where e is energy resources consumption; p is realized power 
converted to the control notches; h is total efficiency of the 
locomotive; s is the distance covered; R is resulting force; u is 
traction control function; Q is train weight.

To find the roots in this system of equations, Hamiltonian 
function H is formed

( ) ( )
= ψ + ψ ⋅ + ψ

h0 1 2 ,
p u R u

H v
m

where yi is Hamiltonian conjugate variables.
Hamiltonian multipliers are determined from a system of 

equations with partial derivatives

ψ∂
- = ∂ 

ψ∂ - = ∂ 
ψ∂ - = ∂ 

0

1

2

.

dH
e dt

dH
s dt

dH
v dt

This gives some disadvantages of this method, namely the 
need for a large number of calculations of differential equa­
tions, both in solving the equation of train movement, and in 
determining the Hamiltonian conjugate function.

In order to increase the accuracy of calculations by reduc­
ing the integration step, which leads to an increase in the num­
ber of computations, A. M. Kostromin suggested choosing the 
integration step proportionally to constant train time Tconst
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=
x⋅const

1 ,
s

T
k

where x is the coefficient, which takes into account the mass of 
a train and the coefficient of inertia of the rotating masses; ks is 
the stabilization coefficient of the train speed at the change of 
resultant force

∂
= -

∂
.s

Fk
v

In this case, with an increase in the constant time, when 
the speed and the values dependent on it, change more 
slowly, the integration step can be increased. This does not 
affect the established accuracy of calculations, but signifi­
cantly reduces the computing time and improves the effi­
ciency of the mathematical model. In case of taking into ac­
count the potential energy of a train, when increasing the 
positive value of the gradient, it is expedient to reduce the 
integration step [8].

When determining the minimum value of energy resources 
consumption by the method of variational solution for the 
equation of the train movement, proposed by Yu. P. Petrov, it 
is assumed that the equation of the train movement is inte­
grated. The train travel time is chosen as the variable of inte­
gration. At that, limitations are imposed on the execution of 
the scheduled time of movement

 
+ w = h 

 

2
.

2
d Qv v p
dt

Energy resources consumption G when driving along a 
section, length s0 during period T in this method is calculated 
by integrating the equation

( )′′ ′ ′ ′ ′= = + w + + +
h∫ ∫ ∫2 3

1 1
0 0 0

1 ,
T T T

G qdt s s s ks k s dt adt

where w1 is train rolling resistance caused by the change in the 
gradient of a track profile and depending on the current track 
coordinate; k, k1 are coefficients of train rolling resistance, de­
pending on the speed; a is the coefficient of fuel consumption 
intensity, depending on the realized power.

When determining the optimal control law for traction 
rolling stock, it is enough to find such a function s(t), which is 
the minimum of functional G

( )′′ ′ ′ ′ ′= + w + + →∫ 2 3
1 1

0

min.
T

J s s s ks k s dt

When solving the equation, the following limitations 
should be introduced: power of the primary engine P ≤ Pmax; 
maximum acceleration ′′ ′′≤ max;s s  maximum speed, factoring 
in track state, as well as time limits ′ ′≤ max;s s  the impossibility 
of recovery for diesel locomotives.

The disadvantages of this method include: accounting for 
energy resources consumption, linked linearly to the power­
plant output, which affects the adequacy of the model; com­
plexity of solving the target braking problem, since the braking 
start coordinate is set in advance; transmission efficiency of 
power is described by the constant, that is, an additional error 
is created in the calculations.

Bosov A. A. proposed a method for determining the opti­
mal energy resources consumption by an additive criterion. 
The overheating temperature of windings in traction electric 
machines is included as an integral part in the equation of train 
movement

( )
( )

∞-τ + ττ
=

,
,

,
v ud

dt T v u

where t is overheating temperature at the set mode; T(v, u) is 
time constant, depending on the speed of movement and con­
trol mode.

The algorithm for finding the control mode that is optimal 
by energy resources consumption consists of elementary op­
erations, indexed Dc. They form an area B, for which the opti­
mal trajectory is determined X. It is checked for quality control 
in accordance with the set task. According to the minimum 
value of the time in train movement t and work of resistance A 
the function of optimization is as follow

( )

( )

= →

= w →

∫

∫

2

1

2

1

min;

min.

s

s

s

s

dst
v s

A v ds

There are a number of methods for solving the equation of 
train movement. They take into account more variable param­
eters of the train movement, traffic situation and constraints. 
Increasing the number of variation parameters leads to im­
proved accuracy of calculations, which in turn reduces the 
speed of calculations.

Unsolved aspects of the problem. The need to increase the 
speed of trains to ensure the competitiveness of railway trans­
port, the technical condition of locomotives and motor-vehicle 
rolling stock and the constant increase in the cost of fuel and 
energy resources lead to the need for analysis and scientific 
substantiation of control modes for the traction rolling stock, 
their rationalization, calculation of individual energy-saving 
mode maps, correction of train schedules. One of the main di­
rections of rationalization for the modes of trains is their opera­
tional calculation directly during the trip. Therefore, under 
these conditions, there is a need to increase the speed of trac­
tion calculations without loss of accuracy. This issue can be 
partially disclosed through the use of modern computer tech­
nology, but the main direction in the solution of this issue is the 
improving the algorithms of traction calculation.

Problem statement. The advantage of using a numerical 
method for solving the differential equation of train movement 
in traction calculations is to achieve a high accuracy of them. 
The numerical values of integration variables in the equation 
of train movement play an important role in the performance 
of traction calculations on electronic computers. While in­
creasing the value of the integration variable, the number of 
iterations decreases when determining the trajectories of the 
train. This leads to an increase in computing speeds. However, 
large values of the integration variables reduce the accuracy of 
the calculations. Therefore, it is necessary to determine the 
values of integration variables that will satisfy the high-speed 
computations and accuracy of the calculations.

To perform the operational traction calculations directly 
during the trip, it is necessary to determine such an integration 
step for the equation of the train movement, which without 
loss of accuracy will enable to accelerate calculations. There­
fore, the purpose of the article is to determine the rational val­
ues of the variables in solving the equation of train movement, 
as well as the corresponding limits of their applicability.

Description of the research structure. To achieve the pur­
pose, the methods of system analysis are used when compiling 
the mathematical model of the train movement, nonlinear 
programming in determining the rational values of integration 
variables, numerical methods for solving differential equations:

- classical;
- Runge-Kutti-Feelberg;
- Rosenbrock when constructing a mathematical model of 

the train movement and checking the accuracy of the model.
The accuracy of the calculations was also checked by the 

simulation methods and compared with the experimental data 
of the research trips.
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Results. The equation of train movement, which is consid­
ered as a chain of distributed masses on the basis of Newton’s 
second law, can be represented as a system of differential equa­
tions

	 ( )
 ⋅

= ⋅ +

 =

,
1

dv R g
ds v P Q

dt
ds v

	 (1)

where v is movement speed; R is resultant of external forces; g 
is free-fall acceleration; P, Q are mass of a locomotive and a 
train, respectively.

To solve the system of differential equations by numerical 
methods, each element of the profile is divided into integration 
steps ds (in case of integration along the track) or dt (when in­
tegrating over time). Under the step of varying the modes of 
train driving, one assumes the track section ds, on which the 
mode of movement is stable.

In the process of solving the differential equations of train 
movement, using a mathematical model, we determine the fi­
nal speed vf, time dt or a track ds and fuel consumption dq for 
each integration step, based on the initial speed vn.

Consequently, in order to calculate the train movement, it 
is necessary to adopt the method for integrating the differential 
equation of movement (1), and to transform it so as to find the 
law of movement

	 = x⋅ ,dv ds r
dt ds

	 (2)

where x is acceleration of the train under the action of the spe­
cific force of 1 N/kN; r is specific resultant force.

Total resultant of forces R, acting on the train is an additive 
force consisting of rail tractive effort

Ft = f (v, Item, hS, u(x)),

braking forces
B = f (v, u(x)),

and the train rolling resistance

W = f (v, x),

where Item is current of traction electric motors; hF is full effi­
ciency of traction transmission; u is control of the locomotive 
under the appropriate mode of operation (traction, run-up or 
braking); x is the center-of-mass coordinate of the train.

Specific resultant force can be determined by the formula

( )( ) ( )( ) ( ) ( )
h - -

= -
+


, , , ,

,t tem F fF v I u B v u x l W v
r i x

P Q

where ( )i x  is straightened profile factoring in the length and 
mass distribution of the train.

Let us consider the trajectory of the train acceleration in 
coordinates s - v with different independent integrals of the 
equation (2) in the range of 1 km [9]. According to one of the 
recommendations for performing traction calculations for in­
tegrating the equation of train movement we perform the fol­
lowing:

- at speed up to 20 km/h, to integrate over time variable t;
-  in the range of speeds from 20 km/h to the maximum 

permissible – along the track variable s.
The values of the integration step in time t and a track s are 

selected at speed increment Dv ≤ 3  5 km/h.
The above condition during the train movement at uni­

form speed provides large values of interval Ds, and with inten­
sive acceleration – small values of the interval of time Dt, 
which leads to degradation in the accuracy of calculations 
(Fig. 1). The combination of both conditions in the general 
algorithm results in the imposition of supplemental checks at 

Fig. 1. Comparison of the train acceleration trajectories with 
different independent integration variables for the equation 
of train movement:
× – speed v;  – track s

Fig. 2. Determining the range of permissible values for the step of 
variables when integrating the equation of train movement

each step in the solution of the equation, which worsens such 
a property of the model as economical efficiency.

To improve the economical efficiency while maintaining 
the accuracy of calculations, it is proposed to choose the step 
of variables when integrating the differential equation on the 
basis of equality of distances between adjacent points of the 
trajectory in the track-speed coordinates (Fig. 2).

In the course of the research, the parameters and phase 
coordinates of the trajectory were obtained, which showed 
that at the step of integration variables for the track Ds = 50 m 
and speed Dv = 1 km/h at dynamic simulation and Ds = 25 m 
and speed Dv = 0.5 km/h sufficient model accuracy is provided 
at static simulation [10].

In case of integrating the equation of train movement 
along the track s and speed v and accentuation of a real num­
ber using function  at dynamic simulation

=
x⋅∫ ∫

­1 ­1

;
j j

j j

s v

s v

vdvds
r

-
D ⋅x ⋅

= ℜ + 2
1,

500j j
s rv v

integration step Dsj in meters of the current iteration, factoring 
in the previous one, is calculated by the formula

( )- -D = - -
2

2 250 1 ,j j js v v

in case of integration by speed v and time t by equation

=
x⋅∫ ∫

­1 ­1

;
j j

j j

t v

t v

dvdt
r
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-
D

= ⋅ +
x⋅ 160 ,j j

vt t
r

step integration value Dvj in km/h is calculated by the formula

- - -
D = -   

 

2
2 11 .
50

j j
j

s s
v

The greatest accuracy of the model is achieved by integrat­
ing the equation of train movement with certain variables un­
der the following conditions:

- when starting and accelerating up to 40 km/h – by inte­
gration over variables of speed v and time t;

- when moving in traction mode with power regulation 
and in run down mode – by integration over variables of track 
s and speed v;

- in braking mode – by integration over speed v and time t.
Verification in the accuracy and adequacy of the proposed 

algorithm for determining the step of solving the equation of 
train movement is performed by the classical, Runet-Kutti-
Feelberg and Rosenbrock methods of integrating the differen­
tial equations. The results of the solution for the equation of 
train movement in terms of the above methods for integrating 
the differential equations indicate the possibility of using the 
algorithm in traction calculations, including on-board systems 
of the locomotive. The average absolute error value is:

- track coordinates – 0.69 %;
- speed – 0.02 %;
- train movement time – 0.55 %.
Conclusions. The impact of the interval for integration 

variables of the equation of train movement on the accuracy 
and economical efficiency of the mathematical model is ana­
lyzed. The accuracy of calculations within the engineering er­
ror for a dynamic model is provided with the integration step 
for variable track – 50 m, speed – 1 km/h; static model for the 
variable track – 25 m, speed – 0.5 km/h. The determined step 
for a dynamic model allows using the model of train move­
ment in on-board systems of locomotives for the operative re­
calculation of rational control modes when changing the train 
situation.

To improve the economical efficiency while maintaining 
the accuracy of calculations, it is proposed to choose the step 
of variables for integrating the differential equation on the ba­
sis of equality in distances between adjacent points of the tra­
jectory in the track-speed coordinates.

The solution of the equation of train movement is per­
formed by separate integration variables for different speed 
modes and phases in train movement. This increases the reli­
ability of the calculation results in transient processes.

The accuracy and adequacy of the mathematical model in 
certain modes of the train movement are checked by compar­
ing the results with known methods of numerical integration 
of differential equations. From the results of the test, one can 
affirm that the average error value does not exceed 0.7 % for 
the track covered, 0.02 % for speed and 0.55 % for the train 
travel time. Consequently, the adopted model can be used for 
operational definition of the energy-saving modes in driving 
the trains in on-board systems.

Title and number of the project in which the obtained results 
are presented. The work is performed in accordance with the 
plans of research works at Dnipro National University of Rail­
way Transport named after Academician V. Lazaryan, in partic­
ular within the framework of taxpayer-funded theme “Analysis 
of possible causes in deviation of diesel fuel consumption from 
existing standards and preparing the recommendations for re­
ducing the fuel consumption”, Contract No. ОД/Т‑15‑787НЮ 
(No 79.21.15.15) from 18.09.2015, (No ДР 0115U007071). Per­
formers of the theme: Martyshevskyi M. I., Kapitsa M. I., Bo­
byr D. V., Ochkasov O. B., Kyslyi D. M., Koreniuk R. O.
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Визначення меж застосування та значень 
змінних інтегрування рівняння руху поїзда
Б. Є. Боднар, М. І. Капіца, Д. В. Бобир, Д. М. Кислий

Дніпровський національний університет залізничного 
транспорту імені академіка В. Лазаряна, м. Дніпро, Укра­
їна, e-mail: dmitriykisliy@gmail.com

Залізничні перевезення займають важливе місце у 
транспортній інфраструктурі нашої країни. Вони охо­
плюють пасажирські й вантажні перевезення Укрзаліз­
ниці, промислових підприємств, у тому числі перевезен­
ня гірничо-добувного сектору господарства, що характе­
ризуються великими навантаженнями на тяговий рухо­
мий склад за рахунок великих ухилів профілю колії. Ор­
ганізації залізничних перевезень завжди передують тяго­
ві розрахунки, осередком яких є розв’язання рівняння 
руху поїзда.

Мета. Визначення раціональних значень змінних при 
розв’язанні рівняння руху поїзда, а також відповідних 
меж їх застосування.

Методика. Для досягнення мети використані методи­
ки системного аналізу, нелінійного програмування, чис­
лових методів розв’язання диференціальних рівнянь, а 
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саме класичного, Рунге-Кутти-Фельберга, Розенброка. 
Точність розрахунків перевірялася за допомогою методів 
імітаційного моделювання та порівнювалася з експери­
ментальними даними.

Результати. Результатами дослідження є підвищення 
швидкодії розрахунків при розв’язанні рівняння руху по­
їзда без втрати точності, що дозволило використовувати 
запропоновану методику в бортових системах локомотива.

Наукова новизна. Під час виконання дослідження 
отримані нові науково обґрунтовані результати, які 
розв’язують завдання підвищення енергоефективності 
ведення поїздів, що має істотне значення для залізнич­
ного транспорту. Отримані результати складають науко­
ву новизну, що полягає у визначенні раціональних меж 
застосування та значення кроку змінних інтегрування 
рівняння руху поїзда.

Практична значимість. Результати дослідження дозво­
ляють зменшити витрати енергоресурсів на тягу поїздів 
унаслідок оперативного перерахунку раціональних ре­
жимів керування при зміні поїзної ситуації.

Ключові слова: залізничні перевезення, тяга поїздів, рів-
няння, інтегрування, крок, точність

Определение границ применения и значений 
переменных интегрирования уравнения 

движения поезда
Б. Е. Боднар, М. И. Капица, Д. В. Бобырь, Д. Н. Кислый
Днепровский национальный университет железнодо­
рожного транспорта имени академика В. Лазаряна, 
г. Днепр, Украина, e-mail: dmitriykisliy@gmail.com

Железнодорожные перевозки занимают важное ме­
сто в транспортной инфраструктуре нашей страны. Они 
охватывают пассажирские и грузовые перевозки Укрза­
лизныци, промышленных предприятий, в том числе пе­
ревозки горнодобывающего сектора хозяйства, который 

характеризуется большими нагрузками на тяговый под­
вижной состав за счет больших уклонов профиля пути. 
Организации железнодорожных перевозок всегда пред­
шествуют тяговые расчеты, основой которых является 
решение уравнения движения поезда.

Цель. ​​Определение рациональных значений пере­
менных при решении уравнения движения поезда, а так­
же соответствующих границ их применения.

Методика. Для достижения цели использованы мето­
дики системного анализа, нелинейного программирова­
ния, численных методов решения дифференциальных 
уравнений, а именно классического, Рунге-Кутты-Фель­
берга, Розенброка. Точность расчетов проверялась с по­
мощью методов имитационного моделирования и срав­
нивалась с экспериментальными данными.

Результаты. Результатами исследования является по­
вышение быстродействия расчетов при решении уравне­
ния движения поезда без потери точности, что позволи­
ло использовать предложенную методику в бортовых 
системах локомотива.

Научная новизна. Во время выполнения исследова­
ния получены новые научно обоснованные результаты, 
которые решают задачу повышения энергоэффективно­
сти ведения поездов, что имеет существенное значение 
для железнодорожного транспорта. Научная новизна по­
лученных результатов заключается в определении рацио­
нальных границ применения и значения шага перемен­
ных интегрирования уравнения движения поезда.

Практическая значимость. Результаты исследования 
позволяют уменьшить затраты энергоресурсов на тягу 
поездов в результате оперативного пересчета рациональ­
ных режимов управления при изменении поездной ситу­
ации.

Ключевые слова: железнодорожные перевозки, тяга 
поездов, уравнения, интегрирование, шаг, точность
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