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DEFINING THE LIMITS OF APPLICATION AND THE VALUES
OF INTEGRATION VARIABLES FOR THE EQUATIONS OF TRAIN MOVEMENT

Railway transportation is an integral part in the transport infrastructure of our country. They cover passenger and cargo trans-
portations by Ukrzaliznytsia, industrial enterprises, including transportation of the mining sector, which is characterized by heavy
loads on the traction rolling stock due to large gradients of the track profile. Railway transport management is always preceded by
traction calculations, the center of which is to solve the equation of train movement.

Purpose.To determine the rational values of the variables in solving the equation of train movement, as well as relevant limits

in their applicability.

Methodology. To achieve the purpose, methods of system analysis, nonlinear programming, numerical methods for solving
differential equations, namely the classical, Runge-Kutta-Feelberg, and Rosenbrock methods, are used. Computational accuracy
was verified using simulation methods and compared with experimental data.

Findings. The results of the research involve increasing the calculating speed when solving the equation of train movement
without loss of accuracy, which allowed using the proposed method in on-board systems of locomotives.

Originality. During the research, new scientifically grounded results were obtained that solve the scientific task in improving the
energy efficiency of train operation, and are of great importance for railway transport. The obtained results constitute the original-
ity, which consists in determining the rational limits of applicability and the value in a step of integration variables for the equations

of the train movement.

Practical value. The research results allow reducing the cost of energy consumed by hauling operations due to the promt recal-
culation of rational control modes when changing the train situation.
Keywords: railway transportation, hauling operations, equation, integration, step, accuracy

Introduction. Increasing the level of automation is one of
the directions in the railway transport development, concern-
ing various components of the railway automation systems
both in our country and abroad [1]. At the same time, the vital
task is improvement of on-board locomotive control systems
in order to increase the safety of traffic, effectiveness of the
locomotive control in general, enhancing the working condi-
tions for the locomotive brigade, etc.

The tasks that involve calculating the parameters of the
bodies motion, in most cases, are reduced to the integration of
differential equations. The role of numerical methods for solv-
ing differential equations in such engineering and scientific
problems is not only necessary, but also obligatory.

Solution of set tasks in accordance with all rules of math-
ematics, physics and mechanics in some cases may not corre-
spond to the safety of transportation, comfort of passenger
transportation, criteria of energy efficiency, etc. Obviously, the
problem of operational reliability and optimality of transporta-
tion is also common to all methods of calculating the train
movement and should be solved in traction calculations. The
specified requirements and approaches facilitate the solution
of the task and are fundamental to any of the listed methods
for calculating the train movement.
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If among several forces there are speed-dependent ones
and they determine the motion of a system, it is impossible to
calculate the parameters of motion by methods and techniques
of classical mechanics, since these forces change in motion
and depend on speed themselves.

The above tasks can be solved only by methods of integra-
tion of the differential equation of motion.

All main forces that determine the train movement are set
in dependence on speed. Therewith, additional resistance
forces from track gradient and curvature also affect the speed
of the train, and the degree of impact depends on the combi-
nations of elements in the track profile and their length.

Calculation of the trajectories is the most important task in
the simulation of dynamic systems, algorithms of which pro-
vide time as a continuous quantity. The aim of the algorithm to
solve differential equations is approximation of a system be-
havior with continuous time. Since computing at digital calcu-
lations is inherently discrete in terms of time, the integration
algorithm performs the simulation of a system, in which the
time is considered to be continuous, a system with discrete
time. The actual system, obtained in such simulation, is not a
differential equation. Often, this is a complex system with dis-
credited time. The integration algorithms are characterized by
the fact that they reflect the same differential equation in dif-
ferent systems with discrete time.
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Modern mathematics provides extremely powerful and
universal research methods. Practically every concept in
mathematics, every mathematical object, starting from the
concept of a number, is a mathematical model [2]. When con-
structing a mathematical model of an object being studied,
those peculiarities, features and details are distinguished,
which, on the one hand, describe the object to the full extent,
and on the other, admit some mathematical formalization.
This means that when there is a mathematical description of
an object, its features and details one can assign mathematical
concepts into a certain correspondence: numbers, functions,
functionals, matrices, etc. Then connectivities and correspon-
dences detected and predicted in the object under study be-
tween its individual parts and components can be written
down using mathematical relations: equalities, inequalities,
equations. As a result, we have a mathematical description of
the investigated process or phenomenon, that is, its mathe-
matical model. However, the constructed mathematical mod-
el must meet such requirements as universality, adequacy, ac-
curacy, efficiency, etc.

Universality characterizes the completeness in showing
the properties of a real object being studied during simulation.
For the model of the train movement, universality is expressed
in the possibility of its use for various sections profiles, varia-
tional masses of the train formation, series of locomotives, etc.

The adequacy of the train movement model shows the
mapping of the desired properties of an object, namely, tech-
nical-economic characteristics, with an error not higher than
the specified one.

Accuracy can be estimated by the coincidence values in the
characteristics of a real object and the corresponding values of
the characteristics obtained by the models. Accuracy can be de-
termined by comparing the results of a real trip with calculated
ones: speed gauge data, energy consumption, travel time, etc.

Economical efficiency is determined by the cost of memo-
ry resources in the electronic computer (EC) and the time for
implementation and operation of the model. For models that
operate on stationary EC, economy is not a limiting factor
comparing with the models that are software-monitored for
operational decision-making (on-board), because they have to
provide information concerning the change in such factors as
traffic signals, current traffic speed, electric machines capaci-
ty, overheating temperature, etc.

The usage of mathematical models to describe physical
processes and objects is universally accepted and in demand.
To construct a model based on physical laws and calculate the
exact value of any magnitude, it is reasonable to use, at any
time, a deterministic model. However, due to certain unknown
factors such as technical condition and technical-economic
parameters of the traction rolling stock, net train resistance,
the situation on a track, etc., this task cannot be classified as
deterministic one. Consequently, the mathematical model of
the train should take into account the probabilistic parameters
of the fact that variables in the equation of train movement will
lie in a certain definite interval. Therefore, this model must be
classified as stochastic one.

Mathematical simulation while in operation of traction
rolling stock is performed at the stages of designing the loco-
motives both in general and in separate assembly units, opera-
tion, including simulation of trains movement, technical
maintenance [3], and others.

In the simulation of the train movement, the latter is con-
sidered as a dynamic system, which operates in steady state
only at separate intervals of time. Transient processes lead to a
change in all internal parameters of the system, including
power, current, fuel consumption, etc., and some external
ones: kinetic energy of the train, resistance to movement, etc.
[4]. Therefore, the mathematical model of a train is dynamic
by nature.

Graphical methods for traction calculations involve the
use of discrete values in some variables, but the value of phase

coordinates does not always meet these requirements. The nu-
merical integration of the train movement equation provides
determining the phase coordinates at particular points of time
or a track. The accuracy of the definition increases with de-
creasing track As and time At intervals. But at the same time,
such a requirement as economical efficiency worsens. Conse-
quently, in order to improve the accuracy of the calculations,
the model should correspond to a continuous type.

Literature review. In traction calculations, the following
methods are used to solve the differential equation of the train
movement: analytical, graphical, numerical and machine. The
common theoretical basis for these methods is that they involve
solution of the equation for the train movement in the form of
Cauchy problem. This implies the use of certain theoretical ap-
proaches known in technical cybernetics, mechanics and ap-
plied mathematics. They include linearization rules for nonlin-
ear functions; the principle of small deviations of the variables
of the object state; calculating the current coordinates of a
moving object by the observability method by Thaler J.

The graphical and constant speed methods are used for
calculations that do not require high accuracy and do not pro-
vide the definition of energy-efficient modes in driving the
train.

A characteristic feature of the analytical method is the
large amount of calculations, but it provides high precision
under certain conditions. For a more detailed review, the fol-
lowing methods for solving the equation of the train move-
ment with the definition of energy-efficient modes can be
identified. They are:

- variational calculus;

- Pontryagin’s maximum principle;

- nonlinear programming;

- dynamic programming;

- vector optimization and others.

It is advisable to use these methods in accordance with
certain factors that affecting the train movement [5].

One of the methods most often used to solve the equation
of train movement is Euler’s method. The set task in it is find-
ing a program for changing the speed v(¢), which would pro-
vide a given train movement along the section s, that is, the
definition of the integral

s= Iv(t)dt,

where s is the section length; 7 is the period (time) of the train
movement; 7'is the total period of the train movement along a
section.

Optimization of the equation with account of the moment
equilibrium on the moving wheel sets

H=V+p,

where L, is the moment of train rolling resistance, reduced to the
wheelsets, is performed by finding the minimum integral value

T T
0= ju2dt =_[(\>+u0)2 dr.
0 0

The condition is that the initial equation s must comply
with the Euler’s equation

ov diov

where / is auxiliary Lagrange function, which is from the ex-
pression

)

I=(v+u,) 2,

where A is Lagrange multiplier.
After solving the equation, we obtain the Euler’s equation
in the form
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V-A=0.

With the substitution of the initial data, we obtain the
equation of the optimized locomotive control program

v(t)=76:;(t—t;],

where T is train movement time.

Proceeding from this, the parabolic train speed control
program is the optimal one.

During the operation of traction rolling stock in real con-
ditions, traction characteristics of diesel locomotives, electric
locomotives and multiple units do not allow realizing the
speed change curve in trapezoidal form. Therefore, the opera-
tion of electric traction machines should be used as a nonlin-
ear acceleration limitation.

This method has the following disadvantages. They in-
clude a large number of limitations, imposed on the train
movement in real conditions. Transient processes and opera-
tion modes of power transmission elements must be consid-
ered by additional algorithms. The variables of the accelerat-
ing-retardation effort caused by the track profile are difficult to
consider when solving the equation of the train movement.

The basis of the method of dynamic programming in the
theory of hauling operations is Bellman’s optimality principle,
according to which the reduction of energy consumption for
hauling operations is performed by minimizing the value of the
objective function, describing the capacity control in a loco-
motive. To simplify this task, the number of limitations on the
equation of train movement increases, which leads to a de-
crease in the number of iterative approximations.

n

f(v,t,p) =Y Ae, (v,.,ti,pl.) — min,

i=1

where p is the capacity factor of the traction rolling stock; 7 is
the number of iterative approximations in the solution for the
equation of train movement; Ae; is energy resources consump-
tion for i solution spacing (step).
The objective function at dynamic programming for ener-
gy cost reduction on hauling operations is dependence
fivon) =25

i

ft"*l (vifl’tifl)+Ae(V[atjap,' ):|,

where f;_(v;_y, ;_1), fi(v;, 1;) is minimum of the values rela-
tively for the (i — 1)” and i solution spacing (step).

When applying the time limits of the train movement along
a section in the form of integral dependence [6, 7]

Skd
A
t=[=,

v
So
the objective function involves the introduction of Lagrange
multiplier A. This partially simplifies the task of energy cost
reduction
min
ﬁ(vi):T[fifl(vH)+Ae(v,.,tl.,pi)+mi}
i

When solving the equation of train movement by the dy-
namic programming method it is expedient to use the method
of finite increments.

There are deficiencies in this method. They are as follows:
when the integration step is reduced, the number of options for
solving the equation increases exponentially, which leads to
diseconomies of the model and necessitates some amount of
computer time. This raises certain limitations in the applica-
tion of this method in on-board systems of operational deci-
sion-making when changing the train situation during traffic.

When comparing solutions in the equation of train movement
depending on expenses of energy resources consumption from
the time of a train ¢(7) is possible only at certain discrete points

{ti ti+1 tn—l tn}
b
qi qi+l qn—l qn
which makes it impossible to determine the mode of driving
that corresponds to the intermediate values.

When solving the equation of train movement according to
the method by L.S. Pontryagin, the principle of maximum is
used. This method is used in systems that provide high-speed,
including in on-board software and hardware complexes. The
algorithms of the Pontryagin method are based on the method
of dynamic programming.

In problems of the locomotive traction theory at solving
the equation of movement, a set of control impacts is deter-
mined from the tolerance region, which consists of vector
piecewise continuous function u(7), defined at a certain time
interval

ty<t<t,

in every time moment from U area. Problem statement is re-
duced to the choice of such control u(f)* from a set of control
impacts from the admissible region that reset the phase point
from the position x, into x;, which minimizes the functional

jf [x(¢).a(r)] dt - min.

To solve the equation of train movement, we set a system
of equations

de _p(u)
dr n
ds

a_, ,
dt
dv_R(u)
dt 0

where e is energy resources consumption; p is realized power
converted to the control notches; n is total efficiency of the
locomotive; s is the distance covered; R is resulting force; u is
traction control function; Q is train weight.

To find the roots in this system of equations, Hamiltonian
function H is formed

p() R(u)
n

H=y, VYR, —

where , is Hamiltonian conjugate variables.
Hamiltonian multipliers are determined from a system of
equations with partial derivatives

_6H_d\y0
Ge  dr
_6H_a/\u1
as di [
_OH _dy,
oy dr

This gives some disadvantages of this method, namely the
need for a large number of calculations of differential equa-
tions, both in solving the equation of train movement, and in
determining the Hamiltonian conjugate function.

In order to increase the accuracy of calculations by reduc-
ing the integration step, which leads to an increase in the num-
ber of computations, A. M. Kostromin suggested choosing the
integration step proportionally to constant train time 7,
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Tconsl = L’
&k,

where & is the coefficient, which takes into account the mass of
a train and the coefficient of inertia of the rotating masses; k; is
the stabilization coefficient of the train speed at the change of
resultant force

_OF
Coov

In this case, with an increase in the constant time, when
the speed and the values dependent on it, change more
slowly, the integration step can be increased. This does not
affect the established accuracy of calculations, but signifi-
cantly reduces the computing time and improves the effi-
ciency of the mathematical model. In case of taking into ac-
count the potential energy of a train, when increasing the
positive value of the gradient, it is expedient to reduce the
integration step [8].

‘When determining the minimum value of energy resources
consumption by the method of variational solution for the
equation of the train movement, proposed by Yu. P. Petrov, it
is assumed that the equation of the train movement is inte-
grated. The train travel time is chosen as the variable of inte-
gration. At that, limitations are imposed on the execution of
the scheduled time of movement

d[sz

= |+av=np.
dr 2]”“’)

Energy resources consumption G when driving along a
section, length s, during period 7 in this method is calculated
by integrating the equation

T 1T T
G= qut :—j(s" tos ks + kls'3)dt + Iadt,
0 T]0 0

where o, is train rolling resistance caused by the change in the
gradient of a track profile and depending on the current track
coordinate; k, k; are coefficients of train rolling resistance, de-
pending on the speed; a is the coefficient of fuel consumption
intensity, depending on the realized power.

When determining the optimal control law for traction
rolling stock, it is enough to find such a function s(7), which is
the minimum of functional G

T
J= _[(s”s’ +os +ks'? +ks” )dt — min.
0

When solving the equation, the following limitations
should be introduced: power of the primary engine P < P,,,;

maximum acceleration s"<sy_ ; maximum speed, factoring

in track state, as well as time limits s'<s;, ; the impossibility
of recovery for diesel locomotives.

The disadvantages of this method include: accounting for
energy resources consumption, linked linearly to the power-
plant output, which affects the adequacy of the model; com-
plexity of solving the target braking problem, since the braking
start coordinate is set in advance; transmission efficiency of
power is described by the constant, that is, an additional error
is created in the calculations.

Bosov A. A. proposed a method for determining the opti-
mal energy resources consumption by an additive criterion.
The overheating temperature of windings in traction electric
machines is included as an integral part in the equation of train
movement

dt _ —T+Tw(v,u)
dr T(V,u)

where 1., is overheating temperature at the set mode; 7(v, u) is
time constant, depending on the speed of movement and con-
trol mode.

The algorithm for finding the control mode that is optimal
by energy resources consumption consists of elementary op-
erations, indexed A,. They form an area B, for which the opti-
mal trajectory is determined X. It is checked for quality control
in accordance with the set task. According to the minimum
value of the time in train movement # and work of resistance A
the function of optimization is as follow

8 /s
t= I——)min;

5 v(s)

A= Tm(v)ds — min.

There are a number of methods for solving the equation of
train movement. They take into account more variable param-
eters of the train movement, traffic situation and constraints.
Increasing the number of variation parameters leads to im-
proved accuracy of calculations, which in turn reduces the
speed of calculations.

Unsolved aspects of the problem. The need to increase the
speed of trains to ensure the competitiveness of railway trans-
port, the technical condition of locomotives and motor-vehicle
rolling stock and the constant increase in the cost of fuel and
energy resources lead to the need for analysis and scientific
substantiation of control modes for the traction rolling stock,
their rationalization, calculation of individual energy-saving
mode maps, correction of train schedules. One of the main di-
rections of rationalization for the modes of trains is their opera-
tional calculation directly during the trip. Therefore, under
these conditions, there is a need to increase the speed of trac-
tion calculations without loss of accuracy. This issue can be
partially disclosed through the use of modern computer tech-
nology, but the main direction in the solution of this issue is the
improving the algorithms of traction calculation.

Problem statement. The advantage of using a numerical
method for solving the differential equation of train movement
in traction calculations is to achieve a high accuracy of them.
The numerical values of integration variables in the equation
of train movement play an important role in the performance
of traction calculations on electronic computers. While in-
creasing the value of the integration variable, the number of
iterations decreases when determining the trajectories of the
train. This leads to an increase in computing speeds. However,
large values of the integration variables reduce the accuracy of
the calculations. Therefore, it is necessary to determine the
values of integration variables that will satisfy the high-speed
computations and accuracy of the calculations.

To perform the operational traction calculations directly
during the trip, it is necessary to determine such an integration
step for the equation of the train movement, which without
loss of accuracy will enable to accelerate calculations. There-
fore, the purpose of the article is to determine the rational val-
ues of the variables in solving the equation of train movement,
as well as the corresponding limits of their applicability.

Description of the research structure. To achieve the pur-
pose, the methods of system analysis are used when compiling
the mathematical model of the train movement, nonlinear
programming in determining the rational values of integration
variables, numerical methods for solving differential equations:

- classical;

- Runge-Kutti-Feelberg;

- Rosenbrock when constructing a mathematical model of
the train movement and checking the accuracy of the model.

The accuracy of the calculations was also checked by the
simulation methods and compared with the experimental data
of the research trips.
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Results. The equation of train movement, which is consid-
ered as a chain of distributed masses on the basis of Newton’s
second law, can be represented as a system of differential equa-
tions

d__ Rg

ds v~(P+Q) )
dr 1 ’

ds v

where v is movement speed; R is resultant of external forces; g
is free-fall acceleration; P, Q are mass of a locomotive and a
train, respectively.

To solve the system of differential equations by numerical
methods, each element of the profile is divided into integration
steps ds (in case of integration along the track) or df (when in-
tegrating over time). Under the step of varying the modes of
train driving, one assumes the track section ds, on which the
mode of movement is stable.

In the process of solving the differential equations of train
movement, using a mathematical model, we determine the fi-
nal speed vy, time df or a track ds and fuel consumption dg for
each integration step, based on the initial speed v,.

Consequently, in order to calculate the train movement, it
is necessary to adopt the method for integrating the differential
equation of movement (1), and to transform it so as to find the
law of movement

dv@i

ads " @

where & is acceleration of the train under the action of the spe-
cific force of 1 N/kN; ris specific resultant force.

Total resultant of forces R, acting on the train is an additive
force consisting of rail tractive effort

F=f, Lien, ns, u(x)),
braking forces
B=f(v, u(x)),
and the train rolling resistance
W=f(v,x),

where 1, is current of traction electric motors; 1 is full effi-
ciency of traction transmission; u is control of the locomotive
under the appropriate mode of operation (traction, run-up or
braking); x is the center-of-mass coordinate of the train.
Specific resultant force can be determined by the formula

F= Ff(v’lfem (u),nF)—B(v,u(x),lf)—W(v) 717(x)
P+Q ’

where i (x) is straightened profile factoring in the length and
mass distribution of the train.

Let us consider the trajectory of the train acceleration in
coordinates s — v with different independent integrals of the
equation (2) in the range of 1 km [9]. According to one of the
recommendations for performing traction calculations for in-
tegrating the equation of train movement we perform the fol-
lowing:

- at speed up to 20 km/h, to integrate over time variable #;

- in the range of speeds from 20 km/h to the maximum
permissible — along the track variable s.

The values of the integration step in time 7 and a track s are
selected at speed increment Av < 3 + 5 km/h.

The above condition during the train movement at uni-
form speed provides large values of interval As, and with inten-
sive acceleration — small values of the interval of time Af,
which leads to degradation in the accuracy of calculations
(Fig. 1). The combination of both conditions in the general
algorithm results in the imposition of supplemental checks at

35
v, km/h o) ’4’
30

25 &

15 X
X

10 X
X
X s, km

0® ;
0 01 02 03 04 05 06 07 08 09 1

5

Fig. 1. Comparison of the train acceleration trajectories with
different independent integration variables for the equation
of train movement:

x — speed v; o — track s

each step in the solution of the equation, which worsens such
a property of the model as economical efficiency.

To improve the economical efficiency while maintaining
the accuracy of calculations, it is proposed to choose the step
of variables when integrating the differential equation on the
basis of equality of distances between adjacent points of the
trajectory in the track-speed coordinates (Fig. 2).

In the course of the research, the parameters and phase
coordinates of the trajectory were obtained, which showed
that at the step of integration variables for the track As = 50 m
and speed Av = 1 km/h at dynamic simulation and As = 25 m
and speed Av = 0.5 km/h sufficient model accuracy is provided
at static simulation [10].

In case of integrating the equation of train movement
along the track s and speed v and accentuation of a real num-
ber using function R at dynamic simulation

ds= J.Ldv,
05T
As-&-r

v, =R 500 +vi,

s

SI'

integration step As; in meters of the current iteration, factoring
in the previous one, is calculated by the formula

s

As, =50 ‘1—(vj,2—vj,2)2

in case of integration by speed v and time 7 by equation

t v

J J dv
j dt=| —;
1 Vi &r

S5 s#25  sp+S0

Fig. 2. Determining the range of permissible values for the step of
variables when integrating the equation of train movement
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tj=60-ﬂ+tj4,
gr

step integration value Av; in km/h is calculated by the formula

The greatest accuracy of the model is achieved by integrat-
ing the equation of train movement with certain variables un-
der the following conditions:

- when starting and accelerating up to 40 km/h — by inte-
gration over variables of speed v and time ¢;

- when moving in traction mode with power regulation
and in run down mode — by integration over variables of track
s and speed v;

- in braking mode — by integration over speed v and time 7.

Verification in the accuracy and adequacy of the proposed
algorithm for determining the step of solving the equation of
train movement is performed by the classical, Runet-Kutti-
Feelberg and Rosenbrock methods of integrating the differen-
tial equations. The results of the solution for the equation of
train movement in terms of the above methods for integrating
the differential equations indicate the possibility of using the
algorithm in traction calculations, including on-board systems
of the locomotive. The average absolute error value is:

- track coordinates — 0.69 %;

- speed — 0.02 %;

- train movement time — 0.55 %.

Conclusions. The impact of the interval for integration
variables of the equation of train movement on the accuracy
and economical efficiency of the mathematical model is ana-
lyzed. The accuracy of calculations within the engineering er-
ror for a dynamic model is provided with the integration step
for variable track — 50 m, speed — 1 km/h; static model for the
variable track — 25 m, speed — 0.5 km/h. The determined step
for a dynamic model allows using the model of train move-
ment in on-board systems of locomotives for the operative re-
calculation of rational control modes when changing the train
situation.

To improve the economical efficiency while maintaining
the accuracy of calculations, it is proposed to choose the step
of variables for integrating the differential equation on the ba-
sis of equality in distances between adjacent points of the tra-
jectory in the track-speed coordinates.

The solution of the equation of train movement is per-
formed by separate integration variables for different speed
modes and phases in train movement. This increases the reli-
ability of the calculation results in transient processes.

The accuracy and adequacy of the mathematical model in
certain modes of the train movement are checked by compar-
ing the results with known methods of numerical integration
of differential equations. From the results of the test, one can
affirm that the average error value does not exceed 0.7 % for
the track covered, 0.02 % for speed and 0.55 % for the train
travel time. Consequently, the adopted model can be used for
operational definition of the energy-saving modes in driving
the trains in on-board systems.

Title and number of the project in which the obtained results
are presented. The work is performed in accordance with the
plans of research works at Dnipro National University of Rail-
way Transport named after Academician V. Lazaryan, in partic-
ular within the framework of taxpayer-funded theme “Analysis
of possible causes in deviation of diesel fuel consumption from
existing standards and preparing the recommendations for re-
ducing the fuel consumption”, Contract No. O/1/T-15-787THO
(No 79.21.15.15) from 18.09.2015, (No AP 0115U007071). Per-
formers of the theme: Martyshevskyi M. 1., Kapitsa M. 1., Bo-
byr D. V., Ochkasov O. B., Kyslyi D. M., Koreniuk R. O.
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BusHavyeHnHsi MeX 3aCTOCYBAHHS Ta 3HAYEHb
3MIiHHUX IHTerpyBaHHS PiBHSHHS PyXy MOi3aa

b. €. boonap, M. I. Kaniya, /I. B. booup, /1. M. Kucauii

JIHIMPOBCHKUI HaALiOHAJbHUI YHIBEPCUTET 3aJli3HUYHOTO
TpaHCIIOpTY iMeHi akaaemika B.Jlazapsina, m. JIHinpo, Ykpa-
iHa, e-mail: dmitriykisliy@gmail.com

3aTi3HUYHI TIepeBe3eHHs 3aliMaOTh BaXXJIMBE MicCIle y
TPaHCIIOPTHIl iH(pacTpyKTypi Halloi KpaiHu. BoHu oxo-
TUTIOIOTh TTACAXKMPChKi M BaHTaXKHi TMepeBe3eHHsT YKp3ami3-
HMUIIi, MPOMUCIIOBUX MiAPUEMCTB, Y TOMY YMCJIi IEPEBE3EH-
HSI TipHUYO0-T00YBHOTO CEKTOPY TOCTIONAPCTBA, 10 XapaKTe-
pU3YIOTbCS BEJIMKMMU HaBaHTaXXEHHSIMU Ha TSATOBUM pyxo-
MM CKJIaJ] 32 paXyHOK BEJMKHUX YXWIiB TTpoditto KoJii. Op-
raHizaliii 3aJi3HUYHUX MepeBe3eHb 3aBXI1 MePeayIOTh TSITro-
Bi pO3paxXyHKH, OCEPEAKOM SIKUX € PO3B’SI3aHHSI PiBHSIHHS
pyXy noizaa.

Merta. BuzHaueHHs pallioHaJIbHUX 3HAaY€Hb 3MiHHUX TTPU
PO3B’sI3aHHI PiBHSHHSI PyXy I0i3[a, a TaKOX BiAMOBITHUX
MeX iX 3aCTOCYBaHHSI.

Metoauka. 1151 AOCSITHEHHS] METU BUKOPUCTaHi METOIM -
KM CUCTEMHOTO aHaJli3y, HEJiHITHOro mporpaMyBaHHsI, YUC-
JIOBUX METO[iB PO3B’sI3aHHS NUbepeH1liaIbHUX PiBHSIHb, a
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came kiacuuHoro, Pynre-Kyrru-®enbbepra, PoszeHbpoxa.
TouHicTb po3paxyHKiB nepeBipsiacs 3a 10MOMOT0I0 METO/IIB
iMiTalliifHOTO MOJENIOBAHHS Ta MOPiBHIOBAJACS 3 €KCIepU-
MEHTaJIbHUMM JaHUMHM.

Pe3yabTaTu. PesynbraTamMu IOCTIIKEHHST € ITIBUIICHHS
LIBUAKOII pO3paxyHKiB MpU PO3B’sI3aHHi PiBHSIHHS PyXY IO-
i31a 06e3 BTpaTU TOYHOCTI, IO JI03BOJUJIO BUKOPHCTOBYBATU
3aIPOITIOHOBaHY METOAMKY B OOPTOBMX CHCTEMaX IOKOMOTHBA.

HaykoBa HoBusHa. [lig yac BUKOHaHHS AOCTIIKEHHS
OTpMMaHi HOBI HAyKOBO OOIPYHTOBaHi pe3yabTaTH, SKi
pO3B’SI3YI0Th 3aBAaHHSI TABUIIEHHS €HeproedeKTUuBHOCTI
BEIEHHS IMOI3/iB, 110 MAa€ iCTOTHE 3HAYEHHS JIJis 3aj1i3HUY-
Horo TpaHcnopTy. OTprMaHi pe3yJbTaTh CKJIagaloTh HAyKO-
BY HOBU3HY, 11O TOJSITA€ Y BU3HAYEHHI palliOHAIbHUX MEX
3aCTOCYBAaHHSI Ta 3HAUEHHS KPOKY 3MIiHHUX iHTETpYBaHHS
PIBHSIHHS pyXy Ioi3za.

IIpakTyna 3HaYnMicTh. Pe3ybTaTil 1OCTiIKEeHHS T03BO-
JISIIOTh 3MEHILIUTU BUTPATU €HEPropecypciB Ha TATY MOI3IiB
YHACJIIOK OIEPaTUBHOIO TIEPEepaxyHKy pallioHaJIbHUX pe-
JKMMiB KepyBaHHsI TP 3MiHi IMOI3HOT CUTYallii.

KimouoBi ci1oBa: 3a1i3Huuni nepesesents, msaea noizoie, pie-
HSAHHS, IHMe2pPYB8aHHs, KPOK, MOUHICIb

OnpeneneHne rpaHuIl IPUMEHEHUs W 3HAYEHUI
nepeMeHHbIX MHTETPHPOBAHUS YPABHEHHUS
JBIZKEHHS Moe3/1a

b. E. boouap, M. U. Kanuua, /1. B. Fo6wbips, /. H. Kucavtii

JIHenmpoBCKUI HAUMOHAJIbHBIN YHUBEPCUTET KEJIE€3HOAO-
POXHOTO TpaHCIoOpTa HMeHUu akanemuka B.JlazapsHa,
r. JInerp, YkpauHa, e-mail: dmitriykisliy@gmail.com

XKenesHomopoxkHbIe TIEPEeBO3KU 3aHUMAIOT BaXHOE Me-
CTO B TPAaHCIIOPTHOM MHMpPACTPyKType Halleil ctpaHbl. OHU
OXBaTBIBAIOT MACCAXUPCKNE U TPY30BbIe TIEPEBO3KU YKp3a-
JIU3HBILN, TTIPOMBIIIICHHBIX TIPEATPUSITAI, B TOM YHCIIe TIe-
PEBO3KM TOPHOAOOBIBAIOIIETO CEKTOPA XO3SICTBA, KOTOPHII

XapaKTepu3yeTcst OOJTbIIMMK Harpy3KaMy Ha TSTOBBIN MO~
BMXKHOM COCTaB 3a CYET OOJIBIINX YKIOHOB MPOGUIIS TyTH.
OpraHu3aimm XeJe3HOMOPOXHBIX TIEPeBO30K BCerna Tpei-
IIECTBYIOT TSATOBBIE PAacUeThl, OCHOBOM KOTOPBIX SIBISICTCS
pelIeHre YpaBHEHUs IBVDKEHUSI TTOe3/1a.

Leas. OnpeneneHue palMOHAJbHBIX 3HAYEHUI Iepe-
MEHHBIX IPY PelIeHU ypaBHEHMs IBVKEHMS ITOe3/1a, a TaK-
K€ COOTBETCTBYIOIIMX I'PAHULL UX TPUMEHEHUSI.

Metomuka. J{71sT TOCTUKEHUS 1IeJTU UCTIOTh30BaHBI METO-
JIIMKK CUCTEMHOTO aHajn3a, HeJIMHEITHOTO MporpaMMHUpoOBa-
HUSI, YUCJICHHBIX METONOB pelleHMs IuddepeHInaTbHbIX
ypaBHEHMI1, a UMEHHO KJ1accuueckoro, PyHre-Kyrter-MDenb-
Oepra, PozeHOpoka. TOYHOCTh pacueToB MpoBepsIach C MO-
MOIIBIO METOOB UMUTALIMOHHOTO MOJCIMPOBAHUS U CpaB-
HUBAJIAaCh ¢ 9KCITEPUMEHTAIBHBIMU JaHHBIMMU.

Pesyabratel. PesynabTatramMmu uccienoBaHus SIBISICTCS TO-
BBIIIIEHNE OBICTPOICHCTBHS pACYCTOB IIPU PELICHUH YpaBHE-
HUS ABMKEHMS Moe3aa 6e3 MoTepu TOYHOCTH, YTO MO3BOJIM-
JIO WCTIOJIb30BaTh MPEIOKEHHYI0 METOIMKY B OOPTOBBIX
cHUCTeMax JOKOMOTHBA.

Hayunasa HoBusHa. Bo BpeMs BBITIOJIHEHUS MCCIIEIOBA-
HMSI TOJYYeHbl HOBbIE HAyYHO OOOCHOBAHHBIE PE3YJbTaThl,
KOTOpPHBIC PEIAOT 3a/1a4y IMOBBIIIEHUS 93HEPTO3(PHEKTUBHO-
CTU BEJCHMUS TMOE370B, UYTO MMEET CYLIECTBEHHOE 3HAUeHNUe
IIJIST JKeJIE3HOMOPOXKHOTO TpaHcIopTa. HayuHast HoBM3Ha mo-
JIyYEHHBIX Pe3yJIbTaTOB 3aKJII0YAETCS B ONPEIeIeHUN pallo-
HaJIBHBIX TPaHMII IPUMEHEHUST M 3HAYEHMS 111ara MepeMeH-
HbIX MHTETPUPOBAHUS YpPaBHEHUSI ABMKEHMS TTOe3a.

IIpakTHyeckass 3HAYMMOCTb. Pe3ynbTaThl McCIenIoBaHMS
MTO3BOJISIIOT YMEHBIIIWTh 3aTpaThl HEPrOPecypcoB Ha TSATY
MOEe3/I0B B pe3yJIbTaTe OMePaTUBHOTO TTepecyeTa paliioHa b-
HBIX PEXMMOB YIPaBJICHUS IIPU U3MEHEHUY ITOS3IHOM CUTY-
alum.

KinioueBbie ciioBa: oicene3H000podcHble nepesosku, msed
n0e3008, ypasHeHus, UHMe2puposanue, uae, mo4HoCcms

Recommended for publication by A. V. Sokhatskyi, Doctor of
Technical Sciences. The manuscript was submitted 13.02. 19.

ISSN 2071-2227, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2019, N2 6 65


mailto:dmitriykisliy%40gmail.com?subject=

