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Purpose. To construct singular integral equations based on solutions of the Green problem and to develop a method for calcu-
lating stresses in the vicinity of cracks in anisotropic plates of complex form.

Methodology. The investigation was carried out using the theory of elasticity of anisotropic bodies and the method of integral
equations. The numerical algorithm for solving the constructed equations was based on Lobatto quadrature formulas.

Findings. The method of determination of stresses near cracks in plates of complex form was developed with the help of the
apparatus of integral equations. The kernel of the equations were constructed on Green’s solutions, which makes it possible to
satisfy automatically the boundary conditions on the given contours. Green’s solutions were presented and the integral equations
were constructed on their basis for the half-plane with a free or rigidly fixed boundary and plates with an elliptical hole, which are
weakened by cracks. Also the investigation of stress intensity factors was performed for a system of cracks placed near a straight-line
boundary in a half-plane or near an elliptical hole in a plate.

Originality. In the article a method for calculating the stress-strain state in anisotropic plates of complex form based on a device
of singular integral equations was proposed, the kernels of which are constructed on Green’s solutions. Its efficiency is illustrated
while considering the plates of various forms with cracks.

Practical value. The results of the research presented in this work can be used in calculations of the strength of composite plates
of complex form with cracks. The results of the performed calculations give an opportunity to predict the limit equilibrium of

composite plates with cracks located close to its straight-line and elliptic boundaries.
Keywords: composite plate, stress intensity factor (SIF), cracks, singular equations, Lobatto quadrature formulas

To determine the stress-strain state of anisotropic plates with
holes and cracks, the method of boundary integral equations
(BIEM) is widely used. In literature, the most widespread ap-
proach is with application of Somiliano identity, which trans-
forms such tasks into solving hypersingular integral equations [1].

In the book [2] a sufficiently complete overview of the
studies performed in this direction is given. Methods for solv-
ing such equations that are rather complex are given in this
book and in papers [3, 4]. For studies of stresses at cracks in
isotropic materials, simpler methods based on singular inte-
gral equations are more widely used in literature [5]. For
anisotropic plates, similar equations are constructed, which
have a more complex form [6].

The equations were constructed in relation with of deriva-
tives from displacement discontinuity on the edge cracks for a
partial case of anisotropy and described in [7].

In [8] for these problems singular integral equations were
constructed in relation with displacement discontinuity on the
edge cracks that have a simple look. In constructing these
equations, the dependencies [9] between the Lekhnitskii com-
plex potentials, stress and displacements are used. Similar
equations by another method are constructed in [10].

Investigation of stresses near cracks in the plates of com-
plex form with general algorithms BIEM in some cases is com-
plicated. For example, one of the boundaries of the plate is
infinite (in particular, tasks for the half-plane); cracks are lo-
cated close to the hole etc. Therefore, for some particular types
of tasks modified integral equations using Green’s solutions
are constructed, which allow satisfying the conditions on the
chosen boundary identically [5].

In the article, a general approach to the construction of
modified integral equations for anisotropic plates of different
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geometric shapes and weakened by systems of cracks is pro-
posed. This enables to diagnose effectively the technical equip-
ment with defects [11] and to predict its subsequent exploita-
tion [12].

Let us consider an anisotropic plate that occupies a certain
domain D, mark the contour by which the domain is limited
with L and note that this contour can be an external bound-
ary for bounded plates or as border of the hole. Let us assume
that the plate is weakened by the cracks placed along the con-
tours L, j=1,..., Jand also let us accept that the plate is under
the action of constant forces at infinity (for plates of infinite
size) and is loaded with concentrated forces.

The main ratio. Let us first consider an infinite plate with
cracks located along the curves L, j=1, ..., J, the plate is under
the forces at infinity and concentrated forces. By g4(z) = X; +
+ Y, we denote a vector of the stress on an arbitrary curve G,
which belongs to the plate. On the basis of [9] this vector is
determined with the formula,

g = (5, —DZD(z))+ (5, — 1)z D(z,) +

— (1)
+(5, — DY (2,) + (5, — )Y (2,),

where @(z;), W(z,) are Lekhnitskii potentials, z; = x + s, ;=
= dz;/ds; s; are the roots with a positive imaginary part of the
characteristic equation A() =0, j = 1, 2; A(f) = ayt* — 2006 +
+ (200 + 0466) P — 2001 + 03 0y are elastic constants in Hooke’s
law; o,, G,, 1y, are forces; &,, &,, 1., are strains; ds is differential
of the arc on the curve G.

Let us construct modified singular integral equations for
plates of different shapes.

We choose a positive directions of moving on the curves L;,
Jj=1,..., J. Let us designate displacement discontinuity as (u, v)
on the cracks by g, =u* —u~, g, =v" — v". Here the values with
the sign (+) belong to the left edge of the cracks in relation to
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the chosen line of moving and to the right with the sign (). On
the basis of the correlations established in [9] between the po-
tentials of Lekhnitskii and the stresses as well as displacements
and the Cauchy theorem, for this case for the Lekhnitskii po-
tentials we have integral representations.

O(z) = [ 810, (z1,1) + 85P,(21,1) Jds + D ());
L

2
W(2)) = [[81%1(251,) + W, (2,1y) [ds + ¥ 5(2,), @
L

where g, , =dg »/ds, ;=E+sm,j=1,2, (&, ) € L — coordi-
nates for which integration are carried out, L =L, + L, + ... +
+L,

A A
CDI(zlatl):il; D,y (z,1) = 2
’1—11 tl_zl (3)
Bl . B2
‘Pl(zz,tz)zt ; ‘Ijz(Zptz):t
274 27 %

Here @, Wy are solutions of the problem of the theory of
elasticity for a continuous plate (without cracks), which take
into account the applied load,

is; . i is, i

= ; B =- ; By=——; 4
2 2nA, ! 27A, 2 27A, )

b 2TCA1’

Ay =0y, (8=5,)(s _‘El)(sl _i);
Ay =0y, (8, = 5)(8, —5)(8, —$,).

Consider the stress-strain state (SSS), which corresponds
to the potentials ®«(z,, a,), ¥(z,, a,) when a; = ap + s,a;, where
a=ag+ia;is arandom point, a € D, j=1, 2. On the basis of
[9], it follows that the main vector, which corresponds to the
potentials ®@,, ¥, and ®,, ¥,, and the moment of forces at an
random contours, which limits point @, are equal to zero. At a
complete counter clockwise rotation around point a along
random curve G the displacements which correspond to these
potentials endure discontinuity accordingly [u; + iv|]¢= 1, [u,
++ in)]g = i. To wit, the potentials @, ¥; j=1, 2 belong to a
class of dislocation solutions. Specifically, it follows from this
that the displacements which corresponds to potentials (2) re-
ally have displacement discontinuity (g;, g;) on the curve L.

Modified integrated representations. Let us consider now a
case when an elastic anisotropic plate occupies a given domain
D and its boundary is traction-free. Also let us construct the
integral equations for such a plate with the cracks in a way
when the conditions on the boundary of domain D are per-
formed automatically. We construct Lekhnitskii’s potentials
‘Df,, ‘I’f (j =1, 2), to compose modified integral equations,
which are the solutions of the task of the theory of elasticity for
the domain D with a load-free boundary (without cracks),
with the poles at the point (x,, y,),

B,
oL \P;)N_il’ (3)
21 =% 2y =X
where z,o= X = 5} 220 = X + 5205 (%o, o) € D.

Let us denote this potentials by ®?(z,,T), ¥?(2,,T), j=
=1, 2, where T'is the point with the coordinates (x;,, y,).

A general solution to the problem of the theory of elasticity
for the domain D with cracks will be determined in such a form

D(z)= {[‘DID(zl,T)g{(S)+®§’(zl,T)g£(S)]dS+<DD(z1 );

()= [[¥0 s ¥ Tl o).

where CDD(Z1) = (I)Z(Zl)+ CDﬁ(zl), ll’1)(12) = ll"g(zz) + "FODO(Zz);
T is point (&, n), on which the integration is carried out.

Here the potentials @5, %% and ®©F, ¥ are the solu-
tions for the continuous domain D in which load attached to
the plate is taken into account.

The potentials ®?(z,,T), ¥?(z,,T) consist of singular
functions @z, 1), ¥(zp, £),j = 1, 2, which are introduced
above concerning the infinite plates and regular functions That
is why the same displacement discontinuity on L curve corre-
sponds to the ratios (6) and (2). Moreover, by construction,
the potentials (6) identically satisfy the condition of absence of
stresses on the boundary of domain D at arbitrary functions
1,85

We will require the forces on the sides of the crack defined
by formula (1) by the potentials (6) to be equal to those given
on it, which we denote by X;, iY;. Thus, we obtain integral
equations for determining functions g(s),g5(s) using the
Plemelj-Sohotskyi formula in the form

[[£(0(Z,T)+&()0(Z,T) |ds=Q(Z); ZeL, (7)

L

where Q(Z) = Q,(Z) - Op(Z2); O(Z, T) and Qp(Z) are vectors
of the stresses ¢; at point Z with the (x, y) coordinates at the L
curve, defined by the formula (1) by, accordingly, complex po-

tentials  ®?(2,,7),¥?(2,,7),j=12 and ®yz)), ¥p(z);
QL(Z) :XL+ iYL.

Note that in order to implement the proposed approach
there is no need to write out the kernel of the integral equa-
tions for each new domain — it is enough to write separately
the ratio for the determination of stresses which correspond to
the dislocation potentials.

The solution of singular integral equations was carried out
by the mechanical quadrature method, in which the integrals
were calculated with the aid of Lobatto’s quadrature formulas
[8].

The construction of auxiliary (dislocation) solutions. Let us
consider the task of determining the functions CDf(zl,T),
¥ ?(z,,T), where T'is the point (xo, o) € D, D is the domain,
which takes the plate. We introduce complex potentials ®y(z;),
Y(z,) to determine them for D domain, provided that these
have the following singularities

L W) -, ®)

21— %0 2y =%y

(Do(zl)~

and the corresponding stresses on the boundary of domain D
are equal to zero. Here A, B are arbitrary complex constants;
Zjo = Xo + S¥o.J = 1, 2. If the potentials are constructed in this
way, then the dislocation solutions would be

D7(z, M) ==Dy(z, )|A:A/,B:Bj ;

kP/P(ZZ’M):_T0(12)|A:AI‘B:B/ » J=12.

The investigation of the SSS of the half-plane with cracks.
Let us consider a half-infinite plate y < 0 with cracks. For the
application of modified integral equations in the investigation
of the SSS of the half-plane, it is necessary to derivate the re-
spective dislocation solutions and the solutions for a continu-
ous half-plane corresponding to the applied loading.

The dislocation solution for a half-plane with a free
boundary using results [8, 9] is obtained atj =1, 2

A A, ry
D0 (z)=-| —L—+0, A’f+[31 B, ;
21— %0 21— % 21— %y (9)
B, A, Y
\P?(Zz):_ J +(12 AJ—"’Bz Bj 5
2~ % =% =2y

where
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The dislocation solution for a half-plane with a rigidly
fixed side using [9] will be obtained atj =1, 2

A A B,
OP(z)=—| —L—+a|—L=+B—L=|;
<=0 <=0

21— %0

_ _ (10)
B. A. B.
YP(zy) =~ —L—+ o=+, —— |,
2y =2y 2= e
where
o = 90— D . B = DD~ P .
1 5, > Pr 5, >
P —ab. o _ 4P DD .
Oy =—"""1 =<
=PI g
8 =P — 1P,

The stress in a solid half-plane. Let us consider the case of
the action of the concentrated force (X, Y) applied at the point
(x> ¥9)- The corresponding potentials for the half-plane are
determined by the formulas (9, 10) at

__i(p1X+q1Y). __i(p2X+q2Y)
i 2nA, a 2nA,

The results of the calculations. Let us consider the half-
plane with a straight-line crack, perpendicular to its boundary
in greater detail. Let us accept (Fig. 1), the plate is loaded with
the efforts 6, = p, the edges of the crack are traction-free; crack
length is 2/; the centre of the crack is at the / distance from its
boundary. We denote the tip closest to the boundary of the
crack through the A and remote through the B. Calculations

Fig. 1. Half-plane with a rectilinear crack

are done for isotropic and composite materials EF, LU, CF1,
CF2, the elastic constants for which are given in Table 1 [9].
Coordinate system for the dates in Table 1 is selected so that
the Oy axis is parallel to the direction with maximum stiffness
of the material. It was assumed that the direction in which the
modulus of elasticity is maximal is parallel to the axis Oy. For
the cases where this direction is rotated to a certain angle rela-
tive to the Oy axis, this angle is indicated in degrees near the
name of the material.

In Table 2 the calculated relative SIF are given F; =

= K, /(p\xl) for tips of the crack at 4//= 1.1 and h/I= 1.4.

In the same table the results of calculations for edge cracks
are given (at #//=1). In the last rows data for the edge cracks,
which are placed periodically with the period d, are contained

d. The calculation of the relative SIF f; =K, / (p\/E ) are
done at//d=1and //d =2.

The following conclusions can be made for the SIF values
in an orthotropic plate with a perpendicular to the crack edge
if the boundary is parallel to the orthotropic axis, from the
data in the table: the SIFs are largest for isotropic plate; if the
measure of anisotropy of the material which is being explored
is increasing, then the SIF are decreasing; when the main axes
are turning by 90° the values of the SIFs do not change. For the
system of periodically placed cracks, the value of the SIF are
reduced. The SIFs in the anisotropic plate are smaller (larger)
than in the isotropic plate, if the boundary is parallel to the
direction with a smaller (higher) elastic modulus. For cracks
located at an angle to the orthotropic axes, the SIF for aniso-
tropic plate as well as isotropic plates may differentiate by sev-
eral times.

Table 1
The elastic constants [9]
E, (GPa) E, (GPa) G,, (GPa) Vay Vi Wg E,/E, Im(s;) Im(s,)
EF 21.00 32.8 5.70 0.210 0.134 2.003 1.562 0.4462 1.7934
LU 10.80 96.0 2.61 0.210 0.024 12.150 8.889 0.1664 2.0157
CF2 15.00 232.0 5.02 0.280 0.018 17.323 15.467 0.1486 1.7117
CFl1 8.62 400.0 2.80 0.350 0.008 52.829 46.404 0.0840 1.7483
Table 2
The relative SIF F (L) for the rectilinear crack in the half-plane
Izo CFl | cFl90 | EF LU -1 LU -90 LU -45
h/l=11
FI(A) 1.2098 1.1447 1.1447 1.1571 1.1862 1.1559 1.1559 1.4021
FI(B) 1.7584 1.5744 1.5744 1.6136 1.6958 1.6100 1.6100 1.9720
h/l= 14
FI(A) 1.1117 1.0717 1.0717 1.0786 1.0962 1.0779 1.0779 1.2532
FI(B) 1.2544 1.1689 1.1689 1.1842 1.2219 1.1827 1.1827 1.4023
h/1=1;f;
l/d=2 0.2830 0.2946 0.1129 0.2924 0.2385 0.1564 0.2700 0.4052
l/d=1 0.3988 0.4161 0.1597 0.4126 0.3372 0.2212 0.3812 0.5720
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The table also shows the calculated SIFs for isotropic
plates, which are consistent with the literature data [11]. Table

3 shows the calculated relative SIF (values f; = K / p\/ﬁ ) for
an anisotropic half-plane with rigidly fixed boundary at per-
pendicular to boundary edge cracks.

Curvilinear cracks. Let us consider a half-infinite plate
with a crack, which is located along the arc of a parabola or in

stretching at infinity parallel to the boundary forces c% = p.
The parametric equation of the curve on which the crack is
placed has the form x + iy = o(¢): w(t) = I[t + ie(F - 1) + iy,] —

21‘—1'8(1—1‘2)
1412

crack respectively. Here —1 < ¢ < 1; /is a half distance between
the tips of the crack; (0, y,) is the centre of the ellipse; € = 6//;
3 is the maximum distance between the points which belong to
the crack and the segment connecting the tips of the crack.
The results of the calculations of the dimensionless SIC

Frn=K; /(px/ﬁ) for the right tip of the crack in the isotro-

pic plate are given in Table 4. Here in the brackets the data
from work [13], (which are obtained by another method) are
given.

In Table 5 the relative values of SIF for anisotropic half-
plane with a crack along the arch of an ellipse are given.

Also the calculations for the half-plane were made, when
the main axes of orthotropic are directed at an angle of 450 to
the half-plane boundary. This case is typical for general an-
isotropy (no orthotropic material). The following conclusions
can be made from the conducted research and the data in the

for parabolic and OJ(I) =/ +iy, — for half-ellipse

tables. In general, the character of the SIF distribution in the
anisotropic half-plane is similar to that of the SIF in an isotro-
pic half-plane: with the increase in the curvature (convexity)
of the crack the value of the K, always increases with the ap-
proach of the crack to the limit of the half-plane, increases,
except the case when the contour of the crack is close to the
straight line. At a slight anisotropy (EF material), the stressed
state at the tips of the crack differs a little from the isotropic
case (with the increase in the distortion of the crack the differ-
ence is greater). If the stiffness of the material is larger in the
direction of the normal to the tip of the crack, then the anisot-
ropy affects less than when in the same direction the stiffness
of the material is less, for materials with significant anisotropy.
For example, in the case of a crack located on a parabola for
CF2 material, with ¢ = 0.5 a relative deviation of the percent-
age of SIF values for anisotropic and isotropic plates, is 0 =
~(.2 %. At the same time, for the material CF1-90 — 0~ 26 %.
The value of the SIF for the crack located on an ellipse arc is
larger than the corresponding SIF for a crack located along the
arch of a parabola.

The system of the cracks. Let us consider an anisotropic
half-plane with a free boundary, which is weakened by a sys-
tem of collinear or parallel cracks, with a half-length / with the
tensile force p parallel to the boundary. It is accepted that the
collinear cracks (Fig. 2) are located on the axis Oy (which is
perpendicular to the boundary), the distances between the
centres of the cracks are equal d = 2.25/, the tip of the first
crack is located at point A.

Calculations were made for a system of N cracks, at N=1,
2, 3,5, 10, 20, 30, 40. The relative SIFs are calculated for the

Table 3
The SIF values in the half-plane with a rigid boundary
M 1zo [11] CFl1 CF190 CF2 EF LU-1 LU-90
1 0.8688 0.8653 0.5444 0.5447 0.5442 0.5779 0.5439 0.544
Table 4
Comparison of the SIF for the isotropic plate with the data in [11]
Ellipse Parabola
5 F Fy F | Fy
! a=0; =05
0.2 0.3673 (0.368) —0.0557 (~0.056) 0.0739 (0.074) -0.1786 (-0.179)
0.5 0.5301 (0.531) —0.0800 (0.080) 0.2840 (0.284) -0.2921 (-0.292)
15 0.7641 (0.765) —0.0452 (~0.045) 0.6926 (0.693) -0.2437 (-0.244)
25 0.9556 (0.956) ~0.0233 (~0.023) 0.9221 (0.922) -0.1835 (-0.184)
Table 5
The relative values of the SIF for anisotropic half-plane with a crack along the arch of an ellipse
€ 1zo CF1 CF1-90 CF2 EF LU-1 LU-90
0.2 0.3673 0.3507 0.2806 0.3541 0.3571 0.3139 0.3529
0.5 0.5301 0.5279 0.3980 0.5296 0.4942 0.4278 0.5146
1.0 0.6569 0.6676 0.5393 0.6667 0.6228 0.5651 0.6479
1.5 0.7641 0.7717 0.6521 0.7702 0.7320 0.6768 0.7528
2.0 0.8634 0.8648 0.7501 0.8639 0.8304 0.7754 0.8474
2.5 0.9556 0.9514 0.8386 0.9514 0.9217 0.8656 0.9357
Fy(A)
0.2 —-0.0557 -0.0606 —-0.0065 —-0.0595 —0.0428 —-0.0173 —-0.0527
0.5 —-0.0800 —-0.0961 —-0.0017 —-0.0935 —-0.0523 —-0.0125 -0.0784
1.0 -0.0631 —-0.1053 0.0050 -0.0961 —-0.0357 —0.0020 -0.0756
1.5 —0.0452 -0.0968 0.0105 -0.0826 -0.0216 0.0061 -0.0616
2.0 —-0.0329 —0.0841 0.0161 -0.0677 —-0.0109 0.0130 —-0.0477
2.5 —-0.0233 —-0.0710 0.0223 —0.0543 —-0.0021 0.0195 -0.0356

68 ISSN 2071-2227, E-ISSN 2223-2362, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2019, N2 5



Fig. 2. Half-infinite plate with a system of collinear cracks

isotropic plate F; =K, / (p\/g )and in the lower tips of the
cracks are shown by points in Fig. 3 for each crack, which are
connected by the solid lines.

The total number of cracks is indicated near the curves, the
numbers of cracks are indicated horizontally. The results of
the calculations of the relative SIF in the upper tips of cracks

22

are shown in the same figure, which are connected by dashed
lines. The similar data for the composite plates from material
CF1 are shown in Fig. 4. The SIFs for the material were the
same as for the material CF1, which coincide with the data
given in Table 1.

From Figs. 3, 4 we can see that the SIFs are maximum for
the medium cracks. The SIF values are the smallest for the
farthest cracks from the boundary.

The system of parallel equidistant edge cracks in length 2/
at a distance between them 0.25/is considered. The calculated

relative SIFs f; =K / ( pm ), for the N isotropic plate for
systems 1, 3, 5, 7, 11, 21, 41 cracks beginning with the average
(which corresponds to number 1), are presented in Fig. 3 by
the dots. These dots are connected by the solid lines. The
number of cracks is indicated near the corresponding curves.
In the same drawing, the values of SIF for cracks in the plates
of materials CF1, CFly,, which are connected accordingly by
crosshatched lines and dashed lines.

20
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0 4
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Fig. 3. The SIF for isotropic plate with the system of collinear cracks
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Fig. 4. The SIF for the plate from CF1 material with the system of collinear cracks
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Fig. 5. The SIFs for isotropic plate and the plate from the CF1, CFly, materials with the system of boundary parallel cracks

ISSN 2071-2227, E-ISSN 2223-2362, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2019, N° 5 69



It can be seen that the SIFs are not the same for the system
of parallel cracks in materials CF1, CFly,. The maximum SIFs
are obtained on finite cracks, and these values decrease with
increasing of number of the cracks. The SIFs in the case when
the cracks are parallel to the direction with the greater rigidity
of the material were closer to the SIFs in isotropic plates and
were considerably smaller than those for the cracks perpen-
dicular to this direction.

The SSS of the plates with elliptical holes and cracks. Let us
consider a plate with a load-free elliptic hole with semiaxes a
and b, which lie on the coordinate axes Ox and Oy and show
the dislocation and auxiliary potentials ®,(z,), ¥ p(z,) for the
continuous plate with a hole for application of modified inte-
gral equations.

Let us consider the task of determining the dislocation
complex potentials (8) ®y(z;), ¥P((z,) for the domain D, which
lies outside of the ellipse. Initials from these potentials

0o(@) = [Oy(@)dz; wolz) = [¥(z)d2,,
based on (8), have the logarithmic features

0o(z1) ~AIn(z; = 210);  Wo(22) ~ BIn(z; — 250)-

To determine complex functions, we use the approach of
(Hrylitskyi D.V.) work in which the problem for a plate with
an elliptical hole, with the same concentrated force is consid-
ered. To solve the problem, the conformal mapping of the do-
main occupied by the plate and the mapping of auxiliary re-
gions on the appearance of a single circle with the help of
functions are used.

z=0(g) =cg+d/C; z=wlg)=cg;+d/g,  (11)

a+b —b; C:a—isjb;dA
2 / 2 4 2

Using the results of the [4], we have

%(Zl):Aln(Ql _Qlo)_o‘l/‘“n( o P ]_BlBln[gl*];
S1~ S0 S1—S20

a+isjb

d=2 Dj=1,2.

where ¢=

WO(ZZ):Bln(gz—gzo)—azAln( 52 J—ﬁzBlr{gQ*J,
S2 S0 G276

where

S5t

variables ¢; and ¢;, are determined by the values z;, z; on the

basis of correlations (11), ¢;, =1 /a-

| [S .
ST

We determine the dislocation potentials by differentiating

@0(z1)= A +a1A[ 1*—1J+
S1 — S0 SESTENS!

- 1 1
B - y ;
+Py [Gl _‘520 - ﬂ/wl(gl)

+(x2A[ L _Cl}
G2 ~6 G 6
| 527520 2760 2 (12)

- 1 1
B 1| ().
+B, (Gz G H/(‘)Z (‘32)

The auxiliary potentials which take into account the external
load. Let us give additional solutions for the plate with an el-
liptical hole, which take into account the applied external
load. Accept that the boundary contour is free of load, the
plate is under the stretching forces p, the angle between the
direction of the action of which and the axis Ox is equal to a.
The solution of the task in (Hrylitskyi D.V.) is obtained as a
sum of two components. The first ®_, ¥_ are the potentials for
the continuous plate, which correspond to the applied load at
infinity. The second component is determined through the
Lekhnitskii complex potentials which are obtained using the
conformal mapping, which have the form

(P(Gl ) = _4(s1—7psz)gl[ib(sz sin2o. + 2cos? cx) —

—a(2s2 sin? o +sin 2a)};

m[ib(s1 sin2o + 2cos? (x) -

—a(2sl sin o +sin 2(1)}.

‘V(Gz):

The results of the calculations. For example, let us consider
an anisotropic plate with an elliptical hole that is weakened by
a rectilinear crack of the half-length / with the centre at the
point (c, 0), which is inclined at an angle o to the Ox axis. Let
us assume that the plate is stretched along the axis of Oy by the
effort p. The relative values of the SIF, which are calculated

Fy =K,,,,/(p\/ﬁ) for the plate which is made from the

CF1 materials with the ratio of the semi axes b/a = 0.5 at ¢ =
=1.2a,/=0.1a, a =0 (the crack lies on the axis Ox) depending
on the angle between the direction of the main axis of orthot-
ropy and the crack, are depicted in Fig. 6. Here curves 7 and 3
show the value F;and Fj; for the tip of the crack which is clos-
est to the hole, and 2 and 4 — for the remote one. For com-
parison, curves /', 2’ depict the similar results for curves 1, 2
for an isotropic plate (they do not depend on o).

Fig. 6. Scheme of the problem (a). The SIF for the cracks in the anisotropic plate with a hole (b)
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From the figure it can be seen that the most significant im-
pact of anisotropy in this case occurs when a crack is located at
an angle of 45° to the main axis of the orthotropy for a closer
tip of the crack and when o = 60° — for a distant tip. The SIFs
K also grow at these corners.

Let us consider the rectilinear crack inclining at an o angle to
the Ox axis. The results of the calculations of the relative values of
SIF in the tip A vicinity to the hole and the remote tip B at the
angles of inclination of the crack 0 and 45° are given in Table 6.

It can be seen from the table that when the crack is located
on the main axes of orthotropy the values of the SIF were close
to the SIF for isotropic materials; moreover, for all considered
materials they are smaller in value. But for the inclined crack,
the values of the SIF are more significantly different for differ-
ent materials (up to 2—3 times).

Let us consider a plate with an elliptical hole and two rec-
tilinear cracks in the half-length L with the centres at (—c, 0),
(c, 0) points and inclined to the Ox axis at angles 0 and o.. The

calculated values of the relative SIF F; ;, =K, / ( p TEL) in

the A, Btips of the left crack and in the C, D of the right cracks
for the isotropic plate for stretching forces p in the direction of
the axis Oy are given in Table 7 fora = b, ¢ =2a, L =0.8a. The
analogical results for the plate which is made from the essen-
tially anisotropic material CF1 (CFly,) are given in Tables 8, 9.

The results presented in Table 7 are in good agreement
with the directory [13] for the angular points A and B which are
obtained by another method. For the right cracks at the cor-
ners oo ~ 90° the difference between the data increases. The
listed SIF on the developed algorithm with different accuracy

Table 6
The relative SIF for the crack near an elliptical hole
a=0 o =45°
Material
Fi(A) Fi(4) F(B) Fr(B) F(A) Fi(A) F(B) Fi(B)
1zo 2.452 0.0 1.913 0.0 0.994 0.541 0.915 0.402
CFl1 2.191 0.0 1.747 0.0 0.387 0.655 0.351 0.593
CFly, 2.301 0.0 1.873 0.0 1.371 0.311 1.778 0.031
CE2 2.235 0.0 1.771 0.0 0.470 0.644 0.420 0.568
EF 2.420 0.0 1.910 0.0 0.977 0.512 0.955 0.393
LU-1 2.341 0.0 1.882 0.0 1.120 0.427 1.261 0.258
LU-90 2.250 0.0 1.778 0.0 0.509 0.634 0.460 0.555
CF145 3.213 0.941 2.083 0.244 0.719 0.448 0.960 0.049
LU-45 2.882 -0.51 2.060 —-0.18 1.716 0.827 1.057 0.536
Table 7
The relative SIF for the isotropic plate with an elliptical hole and two rectilinear cracks
o/n F(4) Fi(B) Fii(4) Fi(B) F(C) F(D) Fi(C) Fi(D)
0 1.2912 1.9314 0 0 1.9314 1.2911 0 0
0.0556 1.2886 1.9254 —-0.0058 —0.0067 1.8443 1.2396 0.2624 0.1592
0.1111 1.2819 1.91 —-0.0108 —-0.0125 1.6061 1.1633 0.4543 0.3062
0.1667 1.2731 1.8901 —-0.0143 —-0.0167 1.3383 1.0207 0.5629 0.4133
0.2222 1.2637 1.869 —-0.0159 —0.0186 1.0791 0.8508 0.6161 0.4691
0.2778 1.2546 1.8489 —0.0155 —-0.0182 0.8244 0.6609 0.6084 0.4651
0.3333 1.2466 1.8314 —-0.0133 —-0.0156 0.5948 0.4856 0.5428 0.401
0.3889 1.2404 1.8177 —-0.0096 —-0.0113 0.4106 0.3468 0.419 0.2805
0.4444 1.2364 1.8091 —-0.005 —-0.0059 0.2923 0.2616 0.2523 0.1207
0.5 1.2351 1.8062 0 0 0.24 0.240 0.0647 —0.0647
Table 8
The relative SIF for the plate from the CF1 material
o/n F(A4) F(B) Fi(4) Fi(B) F(C) F(D) Fi(C) Fi(D)
0 1.2023 1.6643 0 0 1.6643 1.2023 0 0
0.0556 1.2006 1.6602 —-0.001 —-0.0014 1.5934 1.1653 0.2645 0.1979
0.1111 1.1958 1.6491 —-0.0018 —-0.0026 1.4039 1.0609 0.4804 0.3713
0.1667 1.189 1.6335 —-0.0023 —-0.0034 1.1467 0.9027 0.6201 0.4992
0.2222 1.1814 1.616 -0.0025 -0.0036 0.8672 0.7104 0.6762 0.5661
0.2778 1.174 1.5991 —-0.0024 -0.0034 0.5991 0.5077 0.6525 0.5649
0.3333 1.1674 1.5844 —-0.002 -0.0029 0.3662 0.3186 0.5582 0.4961
0.3889 1.1623 1.5731 -0.0014 —-0.0021 0.1866 0.1651 0.4071 0.3672
0.4444 1.1591 1.566 —0.0007 —-0.0011 0.0731 0.0654 0.2174 0.1922
0.5 1.158 1.5636 0 0 0.0325 0.0325 0.01 —-0.01
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Table 9

The relative SIF for the plate from the CF1,, material

o/m Fi(A) F(B) Fi(A) Fi(B) F(C) F(D) Fi(C) Fy(D)
0 1.2823 1.8189 0 0 1.8189 1.2823 0 0
0.0556 1.2805 1.8151 -0.0003 0.0001 1.712 1.2902 0.4189 —0.045
0.1111 1.2749 1.8033 -0.0006 0.0002 1.4501 1.3068 0.658 -0.1073
0.1667 1.2671 1.7872 -0.0009 0.0002 1.2024 1.3167 0.6708 —0.1243
0.2222 1.2588 1.7702 -0.0013 0 1.0338 1.3033 0.5716 -0.1037
0.2778 1.2511 1.7546 —0.0015 —0.0002 0.94 1.258 0.4412 -0.0628
0.3333 1.2446 1.7416 —0.0015 —-0.0004 0.8966 1.1796 0.319 -0.0234
0.3889 1.2397 1.732 -0.0013 -0.0004 0.881 1.0817 0.2176 -0.0044
0.4444 1.2366 1.7261 —0.0007 -0.0003 0.8852 0.9864 0.1338 —0.0186

0.5 1.2356 1.7241 0 0 0.9177 0.9178 0.0652 -0.0652

did not change significantly the data given in the table. The
same SIF values were also determined on the basis of the di-
rect solving of the task, as for the isotropic plate, also appeared
close to the data in Table 7.

The following conclusions can be made from the data ta-
bles: the SIF for anisotropic and isotropic plates are close to
each other if the crack is parallel to the reinforced elements
(the data in Tables 9 and 7 for the angular points A and B); the
anisotropy substantially changes the SIF on inclined cracks
near the hole.

The conclusions. The singular integral equations are deter-
mined in relation to the derivatives of displacement disconti-
nuity on the edges of cracks based on the Green’s solutions.
The half-plane with a free or stiffly-fix boundary and an infi-
nite plate with an elliptical hole weakened by cracks are con-
sidered in detail. The SIF for the single or for the system of
rectilinear and curvilinear cracks are investigated. The effect of
the plate’s boundary and the anisotropy of the material on the
stress near the cracks is analysed.

In particular, with the tensile of the orthotropic plate with
a crack perpendicular to the edge the SIFs are the largest for
the isotropic material. Anisotropy insignificantly affects the
SIF for a crack which is located on the main axis of orthot-
ropy near the elliptical hole. The value of the SIF for mate-
rial CF1 is by 1.3 times greater than that of an isotropic plate
for the cracks inclined at an angle of 45 to the axes of orthot-
ropy.
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Bu3HayeHHsa HanpyKeHb Y KOMIO3UTHUX
IUIACTMHKAX i3 TPIlIMHAMYU HA OCHOBi METOIY
iHTerpasbHUX PiBHSAHD i po3B’sa3kiB I'pina
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Mera. [loOynyBaT CMHTYJIApHi iHTerpajbHi pPiBHSIHHS
Ha OCHOBI pO3B’43KiB 3a1aui ['piHa, a TakoX po3poOUTH 3a ix
JIOTTOMOTOI0 METOAMKY PO3paxXyHKy HaIpykeHb B OKOJi Tpi-
LIMH B aHi30TPOIMHUX TJIACTUHKAX CKJIaHOI (DOpMU.

Meronuka. JlocmiakeHHs 3IiCHIOBAINUCS 3 BUKOPUC-
TaHHSIM TeOpii MPYXXKHOCTI aHi30TPOMHUX T i METOMYy iHTe-
rpaJIbHUX PiBHSIHb. YUCIOBUIT aITOPUTM PO3B’sI3yBaHHS 10~
OymoBaHUX DPiBHSIHb BUKOHAHWI Ha OCHOBI KBapaTypHUX
dopmyn JlobatTo.

PesymbraTi. Po3pobieHa MeTonnka BU3HAUYEHHS HATPy-
XKeHb OiJig TPIllMH Y IJIACTMHKAX CKJIaIHOI (hopMu 3a 10MO-
MOTOI0 arapary iHTerpaJibHUX piBHSHb. fapa piBHSIHb 1100Y-
JIoBaHi Ha po3B’sa3kax ['piHa, 110 Ja€ 3MOTy aBTOMAaTUYHO
3aIOBOJIbHATA BU3HAUYCHHI T'paHWYHI YMOBM Ha 3aJaHUX
KoHTypax. HaBeneHi po3B’s3ku I'piHa Ta moOymoBaHi Ha iX
OCHOBI iHTEeTpaJIbHi PiBHIHHS Ui MiBIUIOLIUHU 3 BiJIbHOIO
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a00 KOPCTKO 3aKpiIJIeHOIO MeXelo Ta MJIACTUHKU 3 eJTiNTUY-
HUM OTBOPOM, 1110 mocnabieHi TpimnHamu. Bukonani nocii-
JKEHHS KoeillieHTiB iHTEHCUBHOCTI HANPYKEeHb ISl CUCTe-
MU TPILLIMH, PO3MIillIEeHUX OijsT TPSMOJIHIMNHOI MeXi B MiB-
TUTOUIMHI 200 011 eINTUYHOTO OTBOPY Y TUIACTUHLI.

HaykoBa HoBHM3HA. Y pO0OOTi 3alpoONOHOBaHA METOIUKA
pPO3paxyHKy HamnpyxXeHo-1ehOpMOBAHOTO CTaHy B aHi30-
TPONMHMX TJIACTMHKAX CKJIamHOI (opmu, 10 Oa3yeTbcs Ha
arnaparti CUHTYJSIPHUX iHTerpaJibHUX PiBHSIHb, Spa B SIKUX
nodynoBaHo Ha po3B’si3kax ['piHa. ITpoimocTpoBaHa ii eek-
TUBHICTh MPU PO3IJISAi MJIACTUHOK Pi3HOI (OPMHU i3 Tpilu-
HaMU.

IIpakTnyna 3nauumicTs. HaBeneHi B poOOTi pe3ynbraTtu
TOCTTIKeHb MOXYTh OyTM BUKOPMCTaHi B po3paxyHKax Ha
MiI[HiCTh KOMITO3UTHUX TUIACTUHOK CKJIAAHO1 (popMH i3 Tpi-
murHaMu. Pe3ynbTat BUKOHAHUX PO3paxXyHKiB JalOTh MOXK-
JIUBIiCTh TIPOTHO3YBATU TPAHUYHY PiBHOBAry KOMITO3UTHUX
TUTACTUHOK i3 TPillIMHAMU, PO3MILLEHUMU OiJIsT MPSIMOJTiHiIi-
HUX 200 eJIINTUYHUX 11 MEeXK.

KurouoBi cioBa: xomnosumna naacmumka, Koegiyienmu
IHMEHCUBHOCMI HANPYICCHb, MPIWUHU, CUHSYAAPHI DIGHAHMHA,
KkeadpamypHi gopmyau Jlobammo

Onpenenenne HANPSKEHW B KOMIO3UTHbBIX
IUJIACTHHKAX C TPEIMHAMM HA OCHOBE METo/a
HHTErPAJIbHbIX ypaBHeHWi U pemenuii ['puna

O. B. Maxcumosuu', A. P Izro06ux?, K. A. Bapeunckas®,
JI. B. I306ux’

1 — TexHOJIOrMYEeCKU-TIPUPOIOBEAUCCKUI  YHUBEPCH-
teT uMenu SdHa u Enmxes Cusineukux, r. bugromn, I[Monbia,
e-mail: olesyamax@meta.ua

2 — HaumoHanbHbI yHUBepcUTET ,,JIbBOBCKas TMOJUTEX-
Huka“, r. JIbBoB, YKpauHa, e-mail: dar.lviv@gmail.com;
hristinabarvinska@gmail.com; liudmyla.v.dziubyk@lpnu.ua

Heas. [TocTpOUTh CUHTYJISIPHBIC MHTETPAIbHBIC YPaBHE-
HMSI Ha OCHOBE pellleHui 3anaun [puHa, a Takxke paspabo-
TaTb C WX TOMOIIBIO METOIUKY pacueTa HaNpsKeHUH B

OKPECTHOCTHU TPEIIMH B aHU30TPOIHBIX IIACTMHKAX CIIOXK-
HOI1 (POPMBI.

Metoauka. VccienoBaHusT TPOBOAMIIMCH C UCTIONB30Ba-
HMEM TeOPUH YIIPYTOCTA AHU3O0TPOITHBIX TeJl U METO/Ia MHTe-
TPaJIbHBIX YpaBHeHU. YMCIOBOI aJITOPUTM PEIIeHMs T10-
CTPOEHHBIX ypaBHEHUI1 BBITIOJHEH HAa OCHOBAaHUU KBamapa-
TypHbIX hopmyi JlobGaTTo.

Pesyabrarel. Pazpabotana meTomuka ompeneieHus Ha-
MPSDKEHUI OKOJIO TPEITVH B TUIACTMHKAX CIIOXKHOU (OPMBI C
TOMOIIIBIO aTfapara MHTeTPaJbHbIX ypaBHEeHU. Aapa ypas-
HEHUIT TTOCTPOEHBI Ha pellieHusIX [ prHa, Y4To IMO3BOJISIET aB-
TOMATUYECKU YOOBIETBOPSITh YCTAHOBJIEHHBIE TPaHUYHbBIE
yCJIOBUMSI Ha 3aJlaHHBIX KOHTypax. [IpWBemeHbI pelreHust
'pyHa 1 mocTpoeHHBIE HAa WX OCHOBAaHUM HWHTETrpalibHbIe
ypaBHEHWUS TSI TIOJYTIOCKOCTH CO CBOOOIHOM WJIH JKECTKO
3aKPENJICHHOM IpaHULIEeH, a TAKXKE MJIACTUHKU C SJUIAIITUYEC-
CKUM OTBEPCTHEM, KOTOPBIE OCJIa0JIeHbl TpelnHaMu. Bbi-
TOJIHEHBI McchenoBaHusl KO3 ®dOUIIMEHTOB UHTEHCUBHOCTU
HATPSTKEHU TSI CUCTEMBbI TPEIIWH, PACTIONOXKEHHBIX Y TIPS~
MOJIMHEHO rpaHULIbI B MOTYTUIOCKOCTH WU Y DJUTANTHYE-
CKOTO OTBEPCTUS B TUTACTUHKE.

Hayunas HoBusHa. B paGoTe npenjioxeHa MeTonMKa pac-
YyeTa HaTpsKeHHO-e(hOPMUPOBAHHOTO COCTOSTHUSI B AaHU30-
TPOITHBIX MJIACTUHKAX CIO0XHOU (hOpMBI, KOTOpasi OCHOBaHa
Ha anmapare CUHTYJISIPHBIX MHTETPAJIbHBIX YPaBHEHWUI, sipa
B KOTOPBIX OCTPOEHBI Ha peteHusx ['puna. [Tpoumnoctpu-
poBaHa ee 3P OEeKTUBHOCTD MPU PACCMOTPEHUN TIACTUHOK
pasauyHoi (OPMBI C TPEIIMHAMMU.

IIpakTnyeckas 3Hauumoctb. [IpuBeneHHbIE B paboTe pe-
3yJIbTAThl UCCIEOBAHUI MOTYT OBbITh UCIOJB30BAHBI B pac-
yeTax Ha TIPOYHOCTH KOMITIO3UTHBIX TIIACTUHOK CIIOKHOM
(opmel ¢ TpemrHamMu. Pe3ybTaThl BBITOJTHEHHBIX PACYETOB
TAIOT BO3MOXHOCTh TTPOTHO3MPOBATH TPENeTbHOE PAaBHOBE-
CHe KOMIO3UTHBIX IJIACTUHOK C TPELIMHAMMU, PACIIONOXKEH-
HBIMU Y €€ TIPSIMOIMHETHBIX WIN JUTUTITUIECKUX TPAHUII.

KiioueBble cioBa: Kxomnosumuas naacmuHka, Kodgouuyu-
eHMbl UHMEHCUBHOCIU HANPANCEHUI, MPeujutbl, CUHSYASIPHbLE
ypaenenus, keadpamypHvle opmyast Jlobammo

Pexomendosano 0o nybaikayii 0okm. mexH. HAYK
€. B. Xapuenkom. /lama naoxodxcenns pykonucy 01.02.19.
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