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LARGE DEFORMATIONS OF THE CASING STRING UNDER
ITS OWN WEIGHT IN THE CURVILINEAR WELL

Purpose. Determination of deformation and force parameters that describe the strain-stress state of the casing

string in non-vertical well-bore areas.

Methodology. In a curvilinear well, the casing functions as a long permanent continuous rod. Its weight might
cause some deformations that can be determined by a heterogeneous system of four differential equations. Taking into
consideration the technological requirements for pipe installation on centralizers allows us to make the first integral

of the system linear.

Findings. It is proved that the elastic rod deformation under the impact of the longitudinal and transverse forces of
the distributed weight can be calculated by a heterogeneous second order differential equation with variable coeffi-
cients. Its solution is the clue to the formulas of deflections, angular slopes, internal bending moments and transverse
forces in the rod with the arbitrary arrangement of supports and boundary conditions in their intersections.

Originality. The solution of the governing differential equation of angular deformations of a long bar is found in the
form of a linear combination of Airy and Scorer’s functions and in the form of three linearly independent polyno-

mial series in the sum with a partial answer.

Practical value. The obtained formulas of flexure and power parameters allow us to calculate stress and strain in
the tubing during the process of casing the bore-hole of an arbitrary profile which increases the reliability and durabil-

ity of the well.

Keywords: curvilinear well, casing string, elastic rod, bending, Airy’s functions, Scorer’s functions

Introduction. The technology of reliable and safe pe-
troleum extraction from deep deposits presupposes
bore-hole walls to be cased with a steel pipe column and
obligatory cementing of annular space to maintain the
well-bore integrity, prevent or mitigate its collapse [1].
Modern methods of directional and horizontal drilling
make it possible to reach productive layers at a depth of
4—7 km, with the string length extending to 7—10 km.
Noteworthy, its diameter is only 168—140 mm, whereas
wall thickness is 10—12 mm [2]. Typical well-bore con-
figurations include vertical, directional (with critically
deviated vertical parts) and horizontal sections connect-
ed by transient curved passages [3]. As a rule, all column
parts are on the same plane [4].

In well-bores, the casing rests on steel centralizers
serving as hinge supports ensuring the coaxial position-
ing of pipes and walls forming a cement ring of the
same thickness and strength between them [5]. Cen-
tralizers spaced at a distance of 10—20 m prevent exces-
sive deflections and keep the casing from contacting
with the hole walls in curved, sloping and horizontal
sections [6]. Thus, the casing column functions as a
long, permanent rod placed on centralizers and is sub-
ject to considerable geometric distortions of its axis
replicating the well’s curvilinear shape [7]. As a result,
the pipe bodies are exposed to a complex stress-strain
state caused by their bending and axial tension or com-
pression, which decreases the casing reliability and du-
rability [8]. Therewith, internal deformations of the
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metal should not exceed the proportional limit and
Hooke’s law.

Analysis of the recent research and publications. Gen-
erally, there is extensive research literature describing
deformations of bars, beams, columns, rods, strings,
and others. Mathematical tools depicting deformation
problems outline the buckling issues relating to the cas-
ing weight and present practical applications in the cas-
ing string design and control.

Timoshenko and Gere [9] provided various solutions
of elastic and inelastic buckling, namely: built-up col-
umns, beams, curved bars, arches, rings. They estab-
lished mathematical grounds to calculate the deflection
of compressed members due to their weight, suggested
alternate forms of differential equations (hereinafter —
DE) for load determining, applied DEs for lateral buck-
ling, developed the beam-column theory modeling
shear deformation and rotational bending effects in cal-
culating critical loads.

Azar and Samuel [10] developed a model for calcu-
lating tension produced by the casing weight and string
buckling conditioned by axial compression overloading.
Eryilmaz et al. [11] applied homotopy analysis method
to find the critical buckling loads for Euler columns with
continuous elastic restraints by using linear and nonlin-
ear, ordinary and partial DE, integral equations, differ-
ence equations, and others.

Xu and Wu [12] studied tubular string challenges in
high-temperature, high-pressure oil and gas wells. They
explored the string buckling behavior as well as load
combinations resulting in string deformations and found
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a highly dimensional nonlinear DE model using the
classical differential element analysis method.

Renpu [13] established solutions of casing buckling
dependence on axial forces generated by several factors:
casing weight, excessive flexural deformations caused by
axial force decrease, axial tensile force, and the casing
section weight. He proved that the buoyancy factor mul-
tiplied by the casing weight gives the buoyed weight of
the casing.

Investigating buoyancy factor in terms of casing
weight, Byrom [14] dealt with solutions depicting rela-
tion of stability for lateral buckling in tubular strings and
eight parameters. Oriji and Anwana [15] explored the
buoyed weight of the tubing per unit length in a direc-
tional well-bore. Xie [16] claimed that buoyant forces
depend on the casing weight.

Hossain and Islam [17] gave an interesting interpre-
tation of distributed buoyed weight of casing and showed
its dependence on buckling force. Moreover, they stud-
ied the role of casing contact load, well-bore inclination
angle, well-bore azimuth angle, pipe bending stiffness
and radial annular clearness.

Jaculli andl Mendes [18] conducted research on the
dynamic buckling models inside oil wells and reduction
of the bottom hole assembly weight.

Nikolai (1916) and Popov (1948) made some calcu-
lations of double and single curvatures of a long elastic
rod, yet they did not take into account the rod weight.

Frisch-Fay (1962) suggested a different approach to
the problem. He formulated solutions of several prob-
lems concerning initially curved bars of uniform cross-
section and uniform cantilever beams. He also studied
the uniformly distributed loading by applying the series
for a cantilever with one free edge only for vertical and
horizontal fixing. His principle of elastic similarity ex-
plains how to cope with excessive bends of a flexible bar
freely placed on two horizontal supports.

Kotskulych, et al. [5] concentrated on some aspects
of deformed casing columns placed on centralizers in
directional wells. Describing pipe deflections in the sec-
tions between the supports, the authors used a free sup-
ported rod with two free edges. However, they ignored
longitudinal weight. In practice, the casing sections un-
dergo mutual influence of their warps and forces in the
supporting cross-sections. In order to find the necessary
solution, the scientists used compatibility equations of
rotation angles and bending moment equilibrium in ad-
jacent intersections of the rod.

Vytvytskyi, et al. [6] focused on the study of inclined
wells. They also viewed the casing string as a long elastic
rod on supports and used the basic DE for rod deflec-
tions. The results obtained are identical to the well-
known solution of the permanent beam deformation
under the distributed weight. Moreover, they take into
account the rod placement at an indirect angle to the
vertical. Nonetheless, they neglected the effect of longi-
tudinal weight reaching large numerical values in real
wells and definitely deforming casing pipes.

Unsolved aspects of the problem. As studies prove,
scientists have tried to find exact buckling solutions of
various strings, beams, bars, rods, frames and other
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structural elements. However, surprisingly enough,
there is no general solution of the system of differential
equations (hereinafter — SoDEs) determining deforma-
tions of a long elastic rod caused by its own longitudinal
and transverse weight.

According to the analysis made in [19], Kirchhoff’s
rod theory uses a linear elastic law for bending and tor-
sion and proves that large deformations produce geo-
metric nonlinearities in the resulting equilibrium equa-
tions. Kirchhoff’s SoDEs that describes the stress-strain
state of a spatially curved rod is homogeneous with re-
spect to its bending stiffness, whereas all force factors
can be divided into EJ (E is an elastic modulus of the
material; J is a transverse rod moment of inertia). Con-
sequently, regarding the equation universality, we can
analyze large elastic buckling of a long rod with a single
rigidity at its bend. The bending moment numerically
equals rod curvature.

The objective of this article is to determine deforma-
tion and force parameters describing the casing stress-
strain state in non-vertical wells. To achieve this, we
specify the following aims: 1) to build and solve SoDEs
for a long elastic rod bent under its own weight in one
plane; 2) to investigate the governing integral of the sys-
tem, which might help to obtain formulas of deflections,
cross-section rotations, internal bending moments and
transverse forces in the rod with arbitrarily arranged
supports and boundary conditions in their intersections.

Equilibrium equations system. We choose a typical
coordinate system for bore-hole designs: the Z-axis is
oriented vertically down, the X-axis is directed horizon-
tally in the azimuth at the oil field epicenter. The bend-
ing occurs in the vertical surface X0Z.

Let us consider the arc element of the bent rod with
the length ds (Fig. 1). Its upper end is subject to the
bending moment ¢, the longitudinal force 7 and trans-
verse force u, whereas the tangent is inclined to the ver-
tical under the zenith angle 9. (We denote inclination
with ¥ and curvature with ¢, the symbols suggested by
Euler and used by Kirchhoff.). The same forces act on
its lower cross-section when the zenith angle increment
equals d8. However, they balance the initial forces when
increments reach dg, dt, du. The element is also exposed
to the rod’s distributed weight jids.

Z
Fig. 1. Fquilibrium scheme of the bent element
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The following equations describe force equilibrium
projections upon the normal line and tangent

—u—jds sin® + (u + du) cosdd + (¢t + dt) sindd =0,
—t+jds cos® + (¢ +dt) cosdd — (u + du) sind¥ = 0.
The moment equilibrium is expressed in this way
—q+ (q+dq) + (u+du) cosdd - ds cosd¥ —
—(t+dt)cosd?d - ds sindd =0.

SoDEs becomes closed due to Euler’s kinematic DE
determining rod curvature on the same flat surface
, dy 1
q = 8 = —= -,
ds p
where p is the curvature radius; prime mark is for de-
rivative with respect to s.
Consequently, excessive deformations of a long rod
bent in the same plane under its own weight, are de-
scribed by four heterogeneous SoDEs

u'+1t-9% =jsing; (D)
t'—u-9% =—jcosv; 2)
q' +u=0; (3)
¥ —-q=0, (C))

where u and 7 are transverse and longitudinal forces, re-
spectively, acting in the cross-section; ¥ is an inclination
angle of the tangent to the bent rod; j is distributed
weight; ¢ is curvature (bending moment).

Analytical solution. The obtained system consists of
two parts. The first two equations (1—2) depend on a
variable . Obviously, we can exclude a variable s and,
after solving the system, find functions u and ¢ relative to
a variable ¥. Then we can find the dependence of 3 on s
by integrating DE (3—4).

Without the right-hand part, for the homogeneous
system of (1—2) to be valid, the Cauchy-Riemann con-
ditions [20] should be satisfied. Therefore, we compress
them: set up the product of (2) and the imaginary unit
and then find their sum

u+Yt+it' —-iYu=(u+it) —-iYu+ity=2'-iv7Z
jsin® — jj cos® = —jje™,
where Z = u + it is a complex function; i is an imaginary

unit: i =+/—1; e is the base of the natural logarithm.
Hence, we get a complex heterogeneous DE

7' - Y Z=—ije". (4)

Actually, if the homogeneous equation Z' — i’ Z=0
is integrated by separating variables, it leads to

Z=Ce",

where C and D are complex integration constants.
When integrating (5) by the Lagrange method [20],
we consistently obtain

7' = Ceiy + C'e® = Zig + C'e'™;

C'e® =—jje; C=—ijs+ D;
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7= Deil‘) _ [jS@iﬂ.

After solving the Cauchy problem [20], integration
constants and the general solution of (5) will have the
following representation:

D=Ze ™ +ijsy; C=Ze ™ —ij(s—s,);
Z =Zy "% —jj(s—s,)e’®, 6)
where s is a linear coordinate along the bent bar; index 0
denotes initial parameters in the cross-section with the
coordinate s = s,,.

Let us expand complex functions of the right side (6)
Z,e" %) = (u, +ity) (cos(9— 9,) +isin(§-9,)) =
=u,cos(S—9;)—1,sin($-9,) +
+i(t, cos(8—8) +u,sin(8-9));

—ij(s — sp)e’® = j (s — $)(sin® — i cos V).

By separating real and imaginary parts of the com-
plex function Z (6), we derive answers to (1—2) ex-
pressed through the function ¥

U=y cos(D—19) —t,sin(Q—Vy) +j(s—sp)sin®; (7))
t=15cos (O — V) + uysin (B — V) —j(s—s5)cosV.  (8)

Projection method. Frisch-Fay used the projection
method to transform (1—2). We propose a shorter way of
the problem solution.

Step one: project forces applied to the vertical Z. For
this purpose, multiply (2) (which shows the force pro-
jection on the tangent) by cos®; multiply (1) (which is

the same projection on the normal line) by —sin¥; then
add the products obtained

t' cos® — ud’ cos® +j cos’d = 0;
—u' sin® — 1Y sin® + sin?0 = 0;
(fcos) — (usin®) +;=0. 9

Now project the forces on the horizontal line X by
multiplying (1) by cos ¥, (2) by sin1, respectively, and
adding the resulting products

u' cosV+ 1Y cosy —jsind cos¥=0;

£ sin® — ud sin® +; cos ¥ sin = 0;

(tsin®)’ + (u cos )’ =0. (10)

The obtained DE should be integrated
tcosY —usinV+js=cy; (11)
tsin® + u cosV = c,, (12)

where ¢; and ¢, are integration constants.

Step two: project these equations on the tangent by
multiplying (11) by cos® and (12) by sin ¥, respectively,
and adding the respective results

t=c; cosV + ¢, sin® —jis cos . (13)

Afterward, project the obtained integrals upon the
normal line by multiplying (11) by —sin, (12) by cos ¥,
respectively, and by adding them
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u=-—c;sind + ¢, cosV +js sin V. (14)

If we proceed to show that for the Cauchy problem in
the intersection s = s, of the system (13—14), the out-
come is evident

¢; cos By + ¢, Sin By = 1y +jisy cos Vy;
_Cl Sil’l ‘60 + C2 COSﬂO = uo _jSO Sin ﬂo.

This system enables us to derive integration con-
stants

¢ =1y cosVg — uy sin By + Jso;

C2 = to Sin '190 + uO COS 190.

Finally, we apply them to formulas (13—14) in order
to obtain the solution of system (1—2) in the form of
(7-9).

The first integrals. Consider the finite section of the
rod bent in the flat surface. In its cross-section with the
coordinate s, inclined to the vertical under the angle O,
the bending moment is ¢g,. Draw the local z-axis and the
longitudinal force #, along the tangent and the x-axis
and the transverse force u, along the normal (Fig. 2).

Then in an arbitrary intersection with the coordinate
s inclined to the vertical under the zenith angle U, the
bending moment ¢, the axial force ¢ and the transverse
force u are directed to balance the initial ones.

For a finite section of the rod [s,, 5], equilibrium
equations of force projections on the z-axis and on the
x-axis, respectively, take the following form

-1, +;cos(9—90)—usin(8—90)+descosSO =0;

So

—tty +ucos(9—9y) +1sin(9—9y) - [ jdssin 9, =0.

So

Apparently, we can transform them into the first in-
tegrals of SoDEs (1-2)

ty=1cos (¥ — V) — u sin (B — V) +/ (s — 55) cosVy;

Uy=u cos (VO — V) + £sin (O — V) —j (s — 5p) sin Oy,

The solution of this system regarding functions ¢ and
u brings (1—2) to the form described by (7—8). Another
first integral is derived from the moment equilibrium re-
garding the current cross-section s

u q 1t
Zn
¥ / / $-38,
¢ %
qo/ M o J

L

Fig. 2. Equilibrium scheme of the finite area of the curved
tube
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q-q, —t0x+u0z+jcos80_[(x—§)ds+

So

+jsin90j(z—c)ds=0;

So

q-q, —t0x+uoz+jcos\90£x(s—s0)—Ic’;ds]+

So

+jsin80[z(s—so)—j§dsjzo.

So

In the chosen local coordinate system the differen-
tials are dz = cos (O — 9y)ds and dx = sin (O — O)ds.

Differentiation of s eliminates the integrals and is
thus sufficient to prove that

q —tox' +uy? +jcosVy(x'(s—sp) +x-1—x)+
+jsinVy(Z'(s—sy) +2-1-2)=0;
q' — tysin (O — By) + uy cos (B — V) +j (s —5p)sind = 0.

This equation can be obtained by plugging the result
from (7) into DE (3).

Governing differential equation of the problem is ex-
pressed by correlations (3—4) of the original system and
the first integral (7)

V' — 1y sin (O — Oy) + uy cos (B — V) +

+j(s—s5p)sin®=0. (15)

This second order DE with variable coefficients is
nonlinear due to trigonometric functions; thus, we can-
not integrate it into quadrature. However, we assume
that it is possible to seek for a solution of (15) not as the
function of the angle 1, but as the function of its incre-
ment (O — ¥;) on the casing string section between
centralizers.

Let us find the form of (15) on the rod segment be-
tween the support with a coordinate s, and the second
support at the distance / in the direction of increasing s
(not shown in Fig. 2), through which a new local axis z,
is plotted out (where # is an arbitrary part number). At
the upper edge of the segment, the tangent to the bent
rod gets deviated from the new axis at an angle 6, < 0.
Therefore, the zenith angle of the new axis z, to the ver-
tical is 9, = 9y — Uy, with 1, being the given angle of the
rectilinear rod which was not deformed on the n™ seg-
ment between the two supports.

The curvature is caused by the rod weight and bend-
ing moments from the two adjacent areas which also un-
dergo some deformation. Hence, the rod cross-sections
get deviated regarding the local axis z, at an angle 6. The
tangent in them takes its inclination angle regarding the
vertical: O =0, + 0; Oy =9, + 0y; O — By =06 — 6,. Substi-
tuting these angles in (15), we obtain the governing DE
of the flexible rod deflection under its own weight

0" — 1,8in (0 — 6,) + uycos (60 — 6,) +
+j(s—5p)sin (Y, +0) =0, (16)
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where 0 is an angle between the tangent at the intersec-
tion of the rod and the axis that connects the two hinge
supports upon which it rests.

The analysis of trigonometric functions (16) helps us
to assess the values acquired in conventional well-bores.
On the section between two centralizers at a distance not
exceeding 20 m, the curve of pipe column, due to its ri-
gidity, is gently sloping. In the first approximation, it re-
sembles a circular arc. Hence, in the bent part, the incli-
nation angle of the tangent to the support axis varies in
the range 6, <0 < 6,, where 6,> 0 is the inclination angle
of the tangent on the second support (0,=|0,), while the
angle increment varies within 0 < (0 — 0y) < 2/0,] .

As directional drilling practices prove, the curvature
with large-radius curved sections of the bore-hole
should not exceed a radius of 160 m. Besides, taking into
account the requirements for allowable pipe deflection
limit and the necessary clearance between the pipe and
hole walls, the distance between centralizers should not
exceed 20 m. Under these conditions, the angle 6 varies
within £0.063 of the radian (+3°.6). In this case, we ac-
cept the values of the functions sin® = 0 and cos0 = 1
with calculation errors of £0.065 and +£0.20 %, respec-
tively. At the same time, errors function values from the
angle increment sin(6 — 6,) = (0 — 6,) should not exceed
0.26 % and cos(6 — 6y) =1 (<0.78 %).

Thereby, taking into consideration technological re-
quirements for the casing in non-vertical and inclined
parts of the well, we can linearize the governing DE to
calculate rod deformations under its own weight with a
reasonable precision

0" — 1,(0 — 0y) + uy +j(s — sp)(sin¥, + 6 cos¥,) =0,

where U, is the zenith angle of the support axis.

Application of Airy and Scorer’s functions. Let us
deal with the Cauchy problem with initial value param-
eters given on the second support. Hence, s, =/, whereas
the parameters are indicated by the index /

0" —1(0-0)+u+j(s—1)(sin9,+06 cosV,) =0;
0" — (jcosV,(I—s)+1)0=jsinO,(s—1)— (u;+1,0),

where /is the distance between the two adjacent supports.
If we change the coordinate measurement direction,
the previous equivalence will be written as

d*0/ds? —a(s. +1,/a})0=bls. —(u, +1,6)),

where s, =/-s, a’ = jcos$,, b} =jsing,.
If we introduce a new variable

c=a,(s.+1,/a}), (17)

then s.=(c—t,/a?)/a,, ds/ds. = a,. Ultimately, the
equation looks like

an an
2 3 3
40 g b bt i,
2 3 32 2
dg a,” a,a; a;
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Inasmuch as tg8, =5} /a}, we use the constant

o = u,+1,(0,+1g9,)

/ 2
n

(18)

a
and obtain the governing DE describing deformations
caused by the weight of the flexible rod placed arbitrarily
between two supports

0-cO=ctgl,—v,, (19)

where 0= de/ dg is a derivative of a new variable.
This is a linear mixed DE of the 2" order with vari-

able coefficients. As 0 = cO is Airy’s homogenous equa-
tion, we can rewrite (19) in terms of the linear combina-
tion of Airy’s functions Ai and Bi (Abramowitz, M. and
Stegun, I., eds.)

6°(c) = C\Ai(g) + C,Bi(o), (20)

where C; and C, are integration constants.

Airy’s functions can be represented by improper in-
tegrals with respect to local parameter ¢ (Abramo-
witz, M. and Stegun, ., eds.)

Ai(g) =" [cos(go+¢"/3)dg; @1
0

Bi(g) =" [(sin(sp+¢*/3) +exp(co-¢*/3))do.
0

If positive values ¢ increase, Airy’s functions mono-
tonically change by the exponential law: Ai(g) decreases,
Bi(c) increases. When the casing is lowered into a curved
well-bore in accordance with (17), the function behavior
corresponds to the positive tension force of the column,
which goes upward: from bottom to top.

For negative values ¢, Airy’s both functions are peri-
odic oscillatory ones. When moving horizontally or close
to horizontal parts of the well, the pipe string undergoes
longitudinal compression due to friction forces that pro-
duce a negative axial force 7 in its body. Similar deflec-
tions are typical of the pipe column, which is consistent
with the trigonometric solution of the Euler problem
concerning the longitudinal buckling of the rod.

One of the partial solutions of heterogeneous equa-
tion (19) is obvious

0,.=—tg?,. (22)

The second partial solution must provide the con-
stant —v,; on the right side of (19). First, let us explore
the case when the rod portion is under a positive tensile
force t,> 0; hence, according to (18) v,> 0. With respect
to the Lagrange method, integration constants are

S S
C =nU,IBi(c)dc+cl; C, =—nU,IAi(c)dc+c2.
0 0

Plugging them into (20) gives
0(c) = ¢ Ai(c) +¢,Bi(g) - tg9, +

+mv, {Ai(g)j Bi(o)do - Bi(g)JiAi(c)ch.
0 0
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The last addend is the second partial outcome that
can be expressed as Scorer’s function Gi (Abramo-
witz, M. and Stegun, 1., eds.)

Gi(g)= n‘lTsin(qw ¢*/3)do =
| N : 23)
= 5Bi(g)+{Ai(g) | Bi(c)dc—Bi(g)JAi(c)ch.
0 0

Our further decision extends this relation to equality
6(g) = ¢, Ai(g) +¢, Bi() + v, Gi(c) - tg9,, (24)

where ¢; =c¢, —mv, /3.

Subsequently, we next turn to the case when the rod
segment is under the negative compressive force # < 0.
Keeping in mind that according to (18) v, < 0, and the
right side of (19) contains a positive constant |v,|, the
notation of the integration constant and general solution
is represented as follows

< <

C, =-nlv|[Bi(c)do+c; C,=n|v|[Ai(c)do+cy;
0 0
0(c) = ¢, Ai(g) + ¢, Bi(c) — g9, +

+n|u,|[Bi(g)TAi(c)dc—Ai(g)jBi(c)dc].
0 0

Here the last addend can be expressed in terms of Scor-
er’s function Hi (Abramowitz, M. and Stegun, 1., eds.)

Hi(g) = ! [exp(sp—¢*/3)do =
) ; : 25)
= EBi(g) + [Bi(g) j Ai(c)do - Ai(g)IBi(c)dc].
0 0

Therefore, we obtain equality
0(5) = ¢ Ai(g) +¢; Bi(g) +nju,|Hi(g) - tg8,,  (26)

where ¢; =c, —2n|o, /3.

Governing equation (15) and derived equality (19)
form the first integral of the initial system (1—4). There-
fore, v, (18) is an integration constant which can be cal-
culated from the boundary conditions of the problem.

Taking notice of (21, 23, 25) and adopting Abramo-
witz and Stegun’s approach (Abramowitz, M. and Ste-
gun, 1., eds.), we can claim that the relationship of Airy
and Scorer’s functions Bi(g) = Gi(c) + Hi(g) allows us to
search for the general solution of DE (19) in the form of
a linear combination of three linearly independent func-
tions

0(c) = ¢; Ai(c) + ¢, Gi(c) +¢3 Hi(g) —tgd,, (27)

where ¢|, ¢, and c; are integration constants determined
by boundary conditions.

Hence, the transverse displacement x of the rod be-
tween the supports, internal bending moments g and
transverse forces u, respectively, imply that
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x = [6ds =—a," [0dg =
=-a' (c1 IAidg+c2JGidg+c3.[Hidg —ctg9, +c4);
g=0'= —ané =-a, (c1 Ai(c;) +c, ('}i(<;)+c3 Hi(g));
u=—q'=a,q=-a’ (cl Ai(g) +¢, Gi(g) + ¢ Hi(g)),

where ds =—a,'dg according to (17).

The Ai function is the key to Airy’s homogeneous
equation, while the functions Gi and Hi are solutions of
Airy’s heterogeneous equation (Abramowitz, M. and
Stegun, I., eds.); therefore,

Ai() = GAi(c);
Gi(g)=¢Gi(g)-n"; Hi(g)=gHi(g)+n;

u=-a?(c(c, Ai(g)+¢, Gi(g)+ ey Hi(g)) (¢, —¢)m).

Proceeding from the results in (24, 26, 27), we get
u=-a((0+1g9,)g-v,).
The support coordinates at s = 0 and s =/ are ¢, =

=al+t, / a’ and ¢, =1, / a?, respectively. Two bound-
ary conditions are non-availability of support deflec-
tions: x(gy) =0; x(g;) =0. The other two boundary condi-
tions are equations of the compatibility of rotation an-
gles and bending moment equilibrium of supporting
cross-sections on the two sides of the adjacent parts of
the rod. At the free edge of the tube column g(g;) = 0.

Series application. Two linearly independent series
satisfy Airy’s homogeneous equation

3
G 4, 4T, 4710,
0, =1+=+—-10c"+—c +——c"+...; (28
AT Tor e T (28)
2,25, 258, 25811
T T T T E TR G

Eventually, we might conclude that heterogeneous
equation 6-c0=1 fits into the series

2 . .6- .6-9.
S 35,364,360 9g”+3 6-9 12g14+....

9*=—
25 e e T 141

(30)

The general solution of DE (19) is a linear combina-
tion of three linearly independent series (28—30) and
the partial answer derived from (22)

9 = CIQA +0293+ 039* —tgﬁn.

In particular, the formulas for x, g, u are defined as
x=-a,' (cljﬁAdg+c2I63dg+c3j9*dg—gthn +c4);

g=-a, (C1éA +c,0, +c3€')*);

u:—a},(cléA +¢,0, +c39*):—a,f((6+tg8n)g—u,).

Clearly, integration constants c¢;, ¢,, ¢; = —V; and ¢,
should be determined by boundary conditions.

Applying results. The formulas obtained provide
technological conditions for casing pipe installation in
the bore-hole. In particular, the equation of transverse
displacements can determine maximum pipe deflection
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Xmax iN the middle of the section setting an allowable dis-
tance /,,,, between centralizers to reduce the deflection
concerned. The values of the bending moments ¢,,,, in
supporting cross-sections make it possible to calculate
maximum bending tensions

Omax = qmaxEd/za

where d is the casing pipe diameter.

Conclusions. This article presents a valid mathemati-
cal tool based on the heterogeneous system of four DEs
describing large deformations of a long elastic rod buck-
led under its own weight in one plane. Technological
requirements for the casing resting on centralizers in
nonvertical and curved wells taken into account, it is
possible to linearize the first integral of the system and
reduce it to the second order heterogeneous DE with
variable coefficients. Its solution is a combination of
Airy’s and Scorer’s functions or three linearly indepen-
dent polynomial series with a partial answer.

The suggested numerical considerations can find their
further development in modeling casing deformation sce-
narios in real conventional bore-holes. The current ap-
proach applies the equation system describing deformation
compatibility and moment equivalence in the supporting
cross-sections of each centralizer along the string length.
Since it is still a challenge to calculate casing buckling, the
detailed deduction procedure can contribute to computa-
tional practices in drilling engineering. This buckling solu-
tion of casing pipes can serve to check the validity, compat-
ibility, and accuracy of numerical methods.

The obtained equations of deformation and force
parameters allow us to calculate the casing pipes stress-
strain in bore-holes of arbitrary profiles. As these math-
ematical tools can be an efficient and accurate key to
determining the casing string buckling, they can in-
crease the well-bore reliability and durability.
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Beauki nedopmanii 00caaHoi KoaoHM mia gi€io
BJIACHOI BArW Y KPUBOJIiHIiiHiil CBePII0OBUHI

€. 1. Kpuscaniecokuii, I. I. Ianitiuyk, I./l. Masux
IBano-M®paHKiBCHKMI HALlIOHATBHUI TEXHIYHUI YHiBepCH-
TeT HadTH i rasy, M. IBaHo-®PpanHkiBchbK, YKpaiHa, e-mail:
rector@nung.edu.ua; paliychuk.igor.if@gmail.com

Meta. BuzHaueHHs piBHSIHb AedopMalliiHuX i cu-
JIOBUX TTapaMeTpiB, 110 OMMCYIOTh HAMPYyXeHOo-aedop-
MOBaHUM cTaH 00caaHOI KOJIOHNW Ha HEBEPTUKAJIBHUX
TiJISTHKAX CBEPIJIOBUHU.

Metomuka. KoyioHa obcanHux TpyO Yy KpMBOJIiHili-
Hil CBEpUIOBUHI TIpalLOE€ SIK JOBIUM HEPO3pi3HUM
ctpkenb Moro Benuki nedopmarii 3 ypaxyBaHHSIM
BJIaCHOI Baru OMNMcaHi HEOJHOPIMHOK CHUCTEMOIO YO-
TUPLOX IU(EpeHIiaIbHUX PiBHSAHb. YpaXyBaHHS BU-
MOT TEXHOJIOTii BCTAHOBJIEHHSI KOJIOHU TPYO y CBEpI-
JIOBUHI Ha LIEHTPYBAJIbHUX OMOpPax A03BOJISIE JliHEApH -
3yBaTH MEPIINii iHTerpajl CUCTEMU.

PesyabTatu. BcraHoBieHo, 1o aedopMyBaHHS
MPY>KHOTO CTPUXKHS i Ji€10 MO3M0BXHbBOI i1 omnepe-
YHOI CKJIaAOBMX CHUJI PO3IOJIIJIEHOI Baru OMUCYETHCS
HEOAHOPIAHUM AvdepeHLialbHUM PIBHSIHHSIM APYro-
To TIOpSAKY 3i 3MIHHMMHM KoedilieHTamMu. 3a Moro
PO3B’SI3KOM 3HAlIeHi BUpa3u MPOTMHIB, KYTOBUX JIE-
¢opMalltiii, BHyTPIILIHIX 3rMHAJILHUX MOMEHTIB i TToTIe-
PEUYHMX CUJI Y CTPUXKHI 3 IOBUIBHUM PO3TalllyBaHHSIM
OITOp i TPAHUYHUMY YMOBAMHU B OTTIOPHUX MEPETUHAX.

HaykoBa HoBu3Ha. 3HaiieHO pO3B’sI30K OCHOBHOTO
IudepeHialbHOTO PiBHSIHHS KYTOBMX nedopmaliiit
JIOBrOro CTPWXKHSI 'y BUIJIAL JIiHIMHOI KoMOiHalii
dyuxkuiit Eiipi it Ckopepa Ta y BUIJISIAI TPbOX JIiHIHO
He3aJIe>KHUX TTOJIIHOMIaJIbHUX PSIiB Y CyMi 3 YAaCTUH-
HUM PO3B’SI3KOM.

IIpakTnuna 3HaummicTh. OmepxXaHi BHpa3u me-
(opMalliifHUX i CMIOBMX MapaMeTpiB HalOTh 3MOTY
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po3paxyBaTU HaINpyXeHHS U aedopmalii TpyOd 00-
CaJHOT KOJIOHM IMiJ 4Yac TEXHOJIOTIYHOTO MpOliecy
KpPITUIEHHS CBEPUIOBUHU MOBiILHOTO MpO(dito, 110
JIO3BOJISIE TMIABUILIMTU HATiHHICTb i JOBrOBIUHICTb il
eKCIuTyaTalrii.

KimouoBi ciioBa: xpusoninitina céeponrosuna, obcaona
KO0HA, NPYJICHULL cmpudicetb, deghopmauii 3euny, QyHK-
yii Eipi, gpynkuyii Cxopepa

Bboabmue nedopmanun 006caaHoii KOJIOHHBI
NoJ eiicTBHEM COOCTBEHHOIO Beca
B KPMBOJIMHEHHON CKBAXKWHE

E. U. Kpviocanuecxuit, U. U. [asuiuyk, I JI. Maauk
NBano-®paHKOBCKUIT HAIMOHAIBHBI TEXHUYSCKUM YHU-
BepcuteT HepTH M Tasza, T. MBaHO-®paHKOBCK, YKpauHa,
e-mail: rector@nung.edu.ua; paliychuk.igor.if@gmail.com

enn. Onpenenenue ypaBHeHUI nedopMaiioH-
HBIX ¥ CUJIOBBIX ITapaMeTPOB, KOTOPbHIE OIMMCHIBAIOT
HanpsKeHHO-Ie(OpPMUPOBAHHOE COCTOSIHME 00ca-
HOIl KOJIOHHBI Ha HEBEPTUKAJbHBIX yJacTKaX CKBa-
SKWHBI.

Metomuka. KojioHHa o0cagHbIX TpyO B KPpMBOJIU-
HEIHOM CKBaxkMHe paboTaeT KakK IJTMHHBIN Hepa3pes-
HOil cTepxeHb. Ero Gosbiue aedopMaluu ¢ yuyeToM
COOCTBEHHOTO Beca OITMCAHBI HEOTHOPOTHOM CHCTe-
MoOIi 4yeThipex auddepeHInanbHbIX YpaBHEHU. YUeT
TpeOOBaHUI TEXHOJIOTUN YCTAHOBKU KOJIOHHBI TPYO B
CKBaXXMHE Ha LIEHTPUPYIOIINX OIOPAaX ITO3BOJISIET JIM-
Heapu3upoBaTh MEPBbII MHTETPaJl CUCTEMBI.

Pe3ynbTatel. YcTaHOBIEHO, YTO AeOPMUPOBAHKE
YIIPYTOrO CTEPXKHS IMOA AEUCTBUEM IPOIOJbHOM U MO-
MEPEYHOI COCTABISIONINX CUJT pacipeieIeHHOTO Beca
OIMMCBIBACTCS HEOAHOPOIHBIM AuddepeHInaTbHBIM
ypaBHEHUEM BTOPOTO TOPsIIKa ¢ TIepeMEeHHbBIMU KO3(D-
dunmenTtamu. I1o ero perreHnIo HaliIeHbI BHIPAKEHUSI
IIPOTUOO0B, YITIOBEIX AedopMalnii, BHYTPEHHUX MU3TH-
0aloIMX MOMEHTOB M IIOTIEPEUYHBIX CUJI B CTEPXKHE C
IIPOU3BOJIBLHBIM PACITOIOXEHUEM OTIOP Y TPAHNYHBIMU
YCIIOBUSIMU B OTIOPHBIX CEUCHUSIX.

Hayuynas noBusna. HaiineHo pernieHue oCHOBHOTO
nudbepeHIIaTbHOTO YPaBHEHMS YIJIOBBIX necdopMa-
LM JJIMHHOTO CTEPXKHSI B BUJIE JIMHEMHOI KOMOUHA-
uu pyHkuuin Diipu u Ckopepa 1 B BUAE TpeX JIMHET -
HO HE3aBMCHUMBbIX MTOJTMHOMUATBHBIX PSIIOB B CYMME C
YaCTHBIM peIIeHUEM.

IIpakTyeckas 3HaunMocThb. [ToydeHHBIE BhIpaxe-
HUS Ie(OPMALIMOHHBIX M CUJIOBBIX ITapaMeTpPOB IIO-
3BOJISTIOT PAcCYUTATh HAMpsDKeHUsT U aedopmanuu
TPyO 006CaTHOI KOJTOHHBI BO BpeMsI TEXHOJIOTMUECKOTO
Ipoliecca KpeTuIeHUSI CKBaKMHEBI IIPOU3BOJILHOTO ITPO-
(us, 9TOo MO3BOSIET MOBBICUTH HAIEKHOCTD M IOJITO-
BEUHOCTB €€ IKCILTyaTalliu.

KioueBble ciioBa: kpueoniuHelinas cKeaycuna, 00-
CadHas KoAOHHA, ynpyeuil cmepiicers, depopmayuu useu -
oa, gynxyuu Jipu, pynkyuu Ckopepa

Pexomendoseano 0o nybaixauyii dokm. mexH. HAyK
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