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Stress-strain state of rubber-cable tractive element 
of t ubular shape

Purpose. Establishment of dependencies of the stress-strain state of a rubber-cable rope on its mechanical param-
eters and geometric parameters of a part where a flat rope gets a tubular shape considering the influence of a cable base 
breakage.

Methodology. Construction of analytic models of interaction of cables within a rubber-cable rope as a composite 
structure, created from parallel cables regularly placed in one plane that interact through a layer of rubber, using the 
methods of mechanics of composite materials. Obtaining analytical dependencies in closed form for establishing the 
parameters of a stress-strain state of a rope in a part where it gets a tubular shape, which allows determining upper and 
lower boundaries of stresses in cables and in a rubber layer of a rope. Mathematical formulation of the process is based 
on the principles of mechanics of layered structures with hard and soft layers.

Findings. Two mathematical models were developed and investigated, which allows defining the boundaries of a 
stress-strain state of a flat rubber-cable rope which gets a spatial shape of a cylinder. Obtained results allow predicting 
running abilities of a rope with a high level of reliability including brakeages of its reinforcing cables.

Originality. Analytical dependencies for boundary values of rigidity characteristics of a rubber inter-cable layer 
were obtained and solved, which allows determining basic characteristics of a stress-strain state of the rope, which gets 
a shape of a pipe within the limited length including the case of a cable base breakage.

Practical value. The possibility to determine the boundaries of a stress-strain state of a rope, prediction of its stress 
state in case of cable breakage during operation, allows reasonable choosing of the parameters of lifting and transport-
ing machines, on which the rope gets a tubular shape. This increases the level of their operation safety and contributes 
to solving the problem of ecological compatibility of underwater oil extraction by removing the oil from the area of the 
well damage directly through the rope cavity, which gets a cylinder shape and which has a massive oil-receiving unit 
attached.

Keywords: flat rubber-cable rope, transitional rope part, longitudinal load, cable base breakage, stress-strain state, 
lifting and transporting machine

Introduction. Designs of modern machines, equipment 
and mechanisms of mining [1–4], transport [5, 6] and 
technology engineering [7–9] are being continuously de-
veloped and improved in the direction of increasing the 
productivity, reliability, strength and energy efficiency.

Flat rubber-cable belts (RCB) and ropes (RCR) are 
widely used in mining and metallurgic engineering [10, 
11]. In particular, ropes in special conveyors are shaped 
into a spatial tube [12]. A rope of tubular shape is sug-
gested to be used in mineral extraction systems [13, 14] 
that use an airlift [15, 16] to protect the water environ-
ment from oil leakage during its underwater extraction 
[17, 18]. Introduction of technical solutions, connected 
with the usage of belts and ropes, which get a tubular 
shape, is constrained by the lack of methods for deter-
mining their stress state, including the case of cable 
breakage.

State of question and statement of research problem. 
To simplify the report of the subject, the belt and the 
rope will hence be called ‘the rope’ for convenience. 
Giving a flat rope tubular shape is accompanied by an 

uneven distribution of forces between its cables. An un-
even distribution of forces leads to the curvature of flat 
cross-sections of the rope and the occurrence of shear 
stress in its shell. The breakage of the rubber shell is not 
just dangerous because of a lost connection between the 
cables. It can also lead to aggressive water leakage to 
cables, their corrosion and breakage.

The structure of the cable, as a system of twisted 
wires, leads to a twisting moment of the rope. Distribu-
tion of forces in a cross-section of the rope impacts the 
strength, twisting equilibrium and operation safety of 
rubber-cable ropes. It depends on the parameters of the 
rope (belt) and the part where it gets a spatial shape. The 
establishment of quantitative characteristics of the 
stress-strain state (SSS) of a rubber-cable rope during its 
spatial deformation under the action of external load is 
an actual scientific and technical problem. The solution of 
it will allow reasonable selection of parameters of the 
transitional part and the entire rope, ensure its strength 
and operation safety. The application of tubular-shaped 
ropes will contribute to solving the actual problem of 
ecological compatibility of underwater mineral extrac-
tion, including oil extraction.© Belmas I. V., Kolosov D. L., Kolosov A. L., Onyshchenko S. V., 2018
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The flat rubber-cable rope consists of a cable system 
that is put in an elastic shell and arranged parallel in 
one plane. The shell can be made of rubber or other 
elastomer. The shell material will hence be called ‘the 
rubber’. It protects the cables from the influence of ex-
ternal environment, the interaction with the material 
being transported and elements of the machine it is in-
stalled on. The issue of a stress-strain state of a flat rope 
in the part where a flat rope gets a tubular shape was 
investigated in the paper [19]. There are no guidelines 
for calculating a rope and limits of their application. 
Papers [10, 11] are devoted to the issue of a stress state 
of a flat rubber-cable rope with cable breakage. The 
stress-strain state of a flat rope as a composite structure 
with soft and hard layers was considered there. The 
hard layers take tensile forces, the soft only take a shear 
stress.

Presentation of main research. Rubber-cable rope 
with a part where it gets a tubular shape is depicted in  
Fig. 1.

Cables have a significant tensile rigidity compared to 
rubber. The rubber provides constructive integrity and 
mechanical interaction of the tractive element system. It 
creates a continuous body of the rope.

The interaction of cables is determined by normal 
and tangential stresses in rubber layers, as in elements of 
composite material. The first appear in the presence of 
relative displacement of cables in the planes normal to 
them. Tangential stresses appear due to a mutual shift of 
cables along their axes. The stresses depend on displace-
ments of cables and rigidity of rubber layers.

The problem of determining the stresses in a rubber-
cable rope in a part where it gets a tubular shape is geo-
metrically nonlinear. It is related to the determination of 
a mechanism of mutual deformation of all elements of 
the rope, including rubber layers, as components of a 
composite structure. In order to simplify the problem, 
determine not the stress-strain state, but the boundaries 
of possible values of stresses that may occur in the ele-
ments of the rope by giving it a tubular shape.

The boundaries of these values are determined by 
the shape that the rope cables get. In the cross-section of 
the rope running on (off) the drum and behind it the 
centers of cables are located along straight lines. The 

cable placement spacing is constant. The rubber located 
between the cables does not deform in a plane of the 
rope. The centers of cables are located on concentric 
circles in the cross-sections of completion of giving a cy-
lindrical shape and the following cross-sections. The 
rubber between the cables is deformed along a circle arc. 
The angular spacing of cable placement is constant.

Significant changes in a distance between the cables 
in cross-sections of the rope occur in the part between 
the part of giving the cross-section of the rope a circular 
shape and the part of running-on (off) the drum. In this 
transitional part the cables get curvilinear shape. There is 
a compression stress in the rubber located between the 
cables. The rigidity of rubber in such compression affects 
the displacement of cables in a cross-section of the rope, 
curvature and internal forces of their tension respective-
ly. Boundaries of a stressed state can be determined by 
considering two cases, taking the rigidity of the rubber 
between the cables in compression by the cables infinite-
ly large and infinitely small.

Consider the case where the distances between the 
centers of adjacent cables remain unchanged in the 
cross-sections normal to axis of the rope. That is, the 
compression rigidity of rubber layers is considered infi-
nitely large.

As indicated above, in a cross-section of running on 
the drum and behind it the cables are located along a 
straight line. Number the cables  1,  2,  3, …,  M/2. 
Perform the displacement of cables in a cross-section of 
completion of a part of giving a cylindrical shape, in a 
plane normal to the axis of the rope. Turn the centers of 
cables numbered i   1 around the first by the angles

.a
M
π

= ±  The centers of cables numbered i =  2 are lo-

cated along the circle with a radius

.
2
tMR =
π

Repeat the turns around the next cable centers by the 
same angles. Provide the placement of all the cable cen-
ters along the circle (Fig. 2).

The displacements of ends of discrete cables occur in 
in circle arcs. For infinitely small cable placement spac-
ing it occurs along evolvents. The distance between 
them is constant. It is equal to the cable placement spac-
ing. Trace normal cylindrical surfaces through the 
movement trajectories of cable centers. Choose the 

Fig. 1. Rope with a part of tubular shape:
1 – a flat part of a rope; 2 – a part of a rope interaction 
with a drum; 3 – a part where a flat rope gets a tubular 
shape; 4 – a part of a tubular-shaped rope

Fig. 2. The diagram of the cable displacement in the part 
of completion of giving a cylindrical shape to the rope
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height of surfaces equal to the length of a part of com-
pletion of giving a cylindrical shape to the rope – L.

Pairs of points are located on the formed surfaces that 
correspond to coordinates of placement of cable centers at 
the boundaries of a part of completion of giving a cylindri-
cal shape to the rope. Trace geodesic curves between the 
points – curves of minimum length. Note that minimum 
lengths of deformed cables correspond to the minimum 
work of their deformation. Unfold the formed cylinders 
with the geodesic lines. Involutes of these lines are straight 
lines. Write lengths of the lines in the following form
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j

L t i j L
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=
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Relative elongations of cables do not depend on co-
ordinate х
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Consider the symmetry of rope deformation. Ex-
pand relative elongations in Fourier series in cosines
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The rope length significantly exceeds the length of 
the part of interaction with a drum. Neglect it. Consider 
a rope consisting of two infinitely long segments. There 
is a part between them where a flat rope gets a tubular 
shape that has a length L. As shown above, relative elon-
gations of cables are constant along the axis of the rope. 
Accordingly, the deformation of the rope occurs sym-
metrically respectively to the middle of the part where 
its cross-section changes the shape. Place the beginning 
of the x-axis in the middle of the specified part.

Deformed, and respectively, stressed state of the rope 
has two planes of symmetry. This allows determining the 
state of the fourth part of a rope. This rope part has a part 
where a rope gets a tubular shape. Give it the number 1, 
and give the adjacent number 2. These numbers are used to 
indicate the parameters related to respective parts. Formu-
late boundary conditions for the accepted physical model

	 x = 0,	 u1,i = 0;
	 x  ,	 u2,1 = u2,2 = … = u2,M,	 p2,i = P,

	 (2)

and the conditions of joint deformation of rope parts

	 x = L/2;  u1,i = u2,i;  p1,i = p2,i,	  (3)

where Р is the average force of tension of cables – a part 
of an external load, that affects one cable.

Considering the generally accepted assumptions 
concerning the character of deformation of rubber-ca-

ble rope components as a composite material with sig-
nificantly different moduli of elasticity of its components 
[19] and boundary conditions (2), accept the following 
forms of solutions
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where ui, pi – displacement of a cross-section of cable i 
along the rope and its inner force of tension resistance; 
M  – the amount of cables in a rope; E, F – reduced 
modulus of elasticity of cable material and its cross-sec-

tion area; 2 [1 cos( )];G
m m

Gbk
hEF

b = - μ  G – rigidity mod-

ulus of elastic (rubber) rope shell material; h – distance 
between cables; b – rope thickness; kG – coefficient that 
considers the influence of rubber shape between the ca-
bles on the rigidity of their connection; Am, Bm – un-
known constants of integration; 1, 2 – part number.

In dependencies (4–7) the components, which in-
clude constants of integration Am, Bm, reproduce the 
mechanism of deviation of deformations and forces 
from mean values. Their sums are zero, which is a con-
sequence of the equality of the sum of internal forces 
and external load. Find unknown constants using the 
conditions of joint deformation of parts (3)
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Calculations of internal forces in cables of the fourth 
part of a part where a rope gets a tubular shape for a rope 
with parameters matching a rope type RCB-3150 are ex-
ecuted. Fig. 3 shows the graph of a ratio of internal forces 
to the average force P = 1 kN applied to rope cables. The 
ratio of actual stresses in the components of machines is 
the coefficient of stress concentration. Analogically, call 
the ratio above a coefficient of concentration of forces. 
The figure shows that internal forces in cables of the 
middle part of the rope are less than average. They are 
the smallest in cables with numbers i   1, in the cross-
section х = 0. The coefficient of concentration of forces 
for the considered case in this point is 0.746. Accord-
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ingly, in the absence of an external load, compressive 
forces would occur in them.

Thus, in order to avoid the compression forces of 
cables to occur, the external load must not be less than 
the compression force of cables with numbers i   1. 
That is, the following condition must be fulfilled
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According to Fig. 3, internal forces that occur in ca-
bles of a symmetrical part of a rope are decreasing. 
Overload coefficient of the extreme cable decreases from 
3.582 in a cross-section of symmetry of the spatial de-
formation part to 2.765 at its edge. The decreasing char-
acter is caused by the influence of adjacent parts of a 
rope with unchanging cross-section geometry. This is a 
consequence of a perturbation locality due to a local de-
formation of rope cables. The manifestation of a local 
redistribution of forces in a part, which is their source, 
indicates insignificant length of parts of redistribution of 
forces. Thus, a deviation of maximum forces from their 
mean values does not exceed 5 % in cross-sections with 
coordinates x = 3L. The length of a part where a rope 
gets a tubular shape is much smaller than its total length. 
Accepted assumption about boundless parts of a rope 
with unchangeable shape of cross-sections can be con-
sidered acceptable. Obtained results are quite reliable.

Fig. 3 shows that the most loaded are extreme rope 
cables. Maximum loads are in the cable М in a cross-
section х = 0. It is determined by a dependency
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According to Hooke’s law, the intensity of a tangen-
tial force, distributed along the length of a rope, is deter-
mined by a dependency

	 ( )1 , 1 1 .i G i i
Gb k u u i M
h - t = - ≤ ≤ -  	 (10)

The figure shows the distributed tangential forces 
transmitted by the rubber in a part where a rope gets a 
tubular shape.

According to calculations, the maximum tangential 
distributed forces are not in the extreme rubber layers.

In the process of designing a part where a rope gets a 
tubular shape, there are problems of determining geo-
metric parameters of such a part – the diameter of a 
formed pipe and a length of a part of its formation. Di-
ameter of a formed tubular shape is determined by the 
rope width. In order to obtain the results suitable for 
comparison, consider a rope type RCB-3150. The 
length of a part where a rope gets a cylinder shape is 
10 m. Change only the amount of cables in it from 20 to 
200 (from 10 to 100 cables in a half of the rope). Deter-
mine the ratio of the largest to the smallest internal forc-
es of the load of extreme ropes (Kr) for a middle part of 
a part of rope shape change and in a cross-section on its 
boundary. The results are shown in Fig. 4.

The given graphic dependency has its maximum at 
75 cables. Growth of number of cables for the consid-
ered case will not lead to a significant decrease in a rela-
tive coefficient (Kr). The specified allows determining 
the maximum forces in the cross-section, which corre-
sponds to half the length of a transitional part. To apply 
the indicated conclusions to other types of ropes, it is 
necessary to determine the length of a transitional part 
as a value in the expression, m

2
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2 2 1 1 1
2

2 2 2 1 1
10 .G
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In this expression, indexes indicate the attribute of a 
rope parameter. For the rope RCB-3150 the index is 1. 
Index 2 refers to the rope, for which it is necessary to de-
termine the length at which the results shown in Fig. 5 are 
realized. This is the result of dependency of forces and 
displacements from the exponent of the product of mag-
nitude of the characteristic index bm and coordinate х.

The intensity of the maximum tangential forces dis-
tributed along the rope length significantly increases 
with increasing number of cables (Fig. 6).

The analysis shows that as the length of a part where 
a rope gets a tubular shape increases, the indicators of 
the stress state decrease as curvature and relative defor-
mations of cables decrease. The results obtained above 
correspond to the values of the upper boundary of stress.

Fig. 3. A surface that reproduces the character of distribu-
tion of coefficients of concentration of forces distribut-
ed along the x-axis between cables with numbers і

Fig. 4. Distribution of tangential forces transmitted by the 
rubber in a part where a rope gets a tubular shape
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We considered the case of absolute high compres-
sion rigidity of rubber above. Accordingly, we accepted 
the condition of constant distances between the centers 
of cross-sections of adjacent cables in a rope. In case of 
infinitely small compression rigidity of rubber, flexible 
cables in a part where a rope gets a tubular shape, re-
main straight. The distances between them decrease, 
with exception for the cross-sections of the beginning 
and the end of a part where a rope cross-section chang-
es. Adjacent cables receive different elongations, except 
for cables located in the middle of a rope. These elonga-
tions are smaller than the elongations in the case above. 
Shear rubber rigidity, as in the previous case, will cause 
redistribution of forces between the cables. Accordingly, 
the relative elongations of cables, their mutual shear will 
take smaller possible values.

Projections of axes of cables on a plane normal to the 
axis of the rope are shown in Fig. 7 with solid straight 
lines.

For comparison, dash lines also show the projections 
of cylinders formed by the corresponding equidistant 
evolvents and on which cables are located, provided the 
constant distances between them. Known lengths of 
projections of cables and the length of a part where a 

rope gets a tubular shape allow determining the relative 
elongations of cables
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Relative elongations (11), as well as elongations (1), 
increase upon the increase of nominal values of cable 
numbers from zero – for cables with numbers i   1. 
Boundary conditions (2) determine the conditions of 
loading and deformation of ropes in cross-sections x = 0, 
x  . They have not changed, as well as a condition of 
joint deformation of parts (3). Leave accepted forms of 
solutions (4–7) unchanged. Recalculations lead to 
forms of rope stress state similar to expressions (8–10). 
The only difference is that instead of the relative exten-
sions e1,i in the upper-mentioned expressions it is neces-
sary to substitute for e2,i. Insignificant difference in de-
pendencies of rope stressed states for extreme cases of 
rigidity of rubber layers determines their qualitative co-
incidence. Thus, minimum force concentration coeffi-
cient (in cables numbered i   1, in cross-section х = 0) 
K = 0.821, whereas in the previous case – 0.746. Differ-
ences between the forces and stresses that occur at 
boundary rigidity for rubber layers related to maximum 
values are 35 and 44 %.

Considering two cases of a deformed state of a rope 
with extreme values of rigidity of rubber layers, located 
between cables, we can make the following inequality
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The resulting inequality (12) allows determining the 
possible boundaries of values of additional force Pad that 
occurs in the most loaded rope cables in a part where a 
rope gets a tubular shape.

Shear rigidity of rubber layers depends on a cable 
placement spacing in a rope. It infinitely increases with 
decreasing of a cable placement spacing to a mini-

Fig. 5. Dependency of a relative coefficient (Kr) on the 
amount of cables in a rope М

Fig. 6. Dependency of intensities of maximum tangential 
forces distributed along the rope length on the number 
of cables in it

Fig.  7. Projection of a rope and its axes centers on a 
plane, normal to the axis of a rope
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mum, equal to a diameter of cables. In rubber-cable 
ropes, provided that the rope weight is minimized, 
smaller cable placement spacing is used. The values of 
maximum cable tension forces in rubber-cable ropes 
are closer to the upper limit. The functional purpose of 
conveyor belts is dual. They perform the function of 
carrying the transported object on the belt during 
movement, and also transfer the traction force. The 
latter raises the problem of appropriateness of use of 
ropes with increased cable placement spacing. In-
creasing the thickness of a rubber layer between the 
cables reduces compressive rigidity of rubber and leads 
to a decrease in values of extreme tension forces of 
cables.

The condition of constant shape of all cables must be 
fulfilled together with a condition of strength. The ful-
fillment of the condition is possible by preventing the 
occurrence of compression forces of cables – the fulfill-
ment of condition (8), considering the value of relative 
elongation described by dependency (11).

Rope is shaped into a tube via connecting its edges 
by special locks. The pulling capacity of a rope, includ-
ing one of tubular shape, is ensured by its design, in par-
ticular the number of cables in it. Rope cable breakage is 
possible during operation. Breakage also affects strength 
of a rope. Strength loss caused by cable breakage must 
be taken into account when allocating a safety margin to 
avoid emergency situations.

Determine the stress-strain state of such tubular-
shaped rope with a broken random cable k. Trace a 
plane through the axis of this cable and the axis of the 
tubular rope. It divides the tubular rope into two sym-
metrical parts. In case when the number of cables M is 
not even, the plane will pass in the middle between the 
cables, as shown in Fig.  8. Taking this into account, 
consider a rope, which consists of an odd number of 
cables M. Number the cables from one to M.

Unfold this cut tubular rope. As a result, we have a 
stress-strain state of the rope that is symmetrical rela-
tively to the broken cable. Displacements and loads of 
cables with numbers 1 and M are the same. Shear stress 
in a rubber layer between them is absent. This shows that 
the breakage of any single cable leads to an identical 
stress state of the rope of tubular shape, relatively to a 
location of the cable. This state according to the com-
putable model is characterized by the fact that specifi-
cally the middle cable is always broken. This allows us to 
apply a known form of solution for determining the SSS 
of a tubular tractive rope with a broken cable
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where с – unknown constant.
Consider a rope loaded with an external force P as 

infinitely long one with a broken cable in the middle. 
Place the start of x-axis in a cross-section of cable 
breakage. Given the symmetry, consider a part of the 
rope in an interval 0 ≤ x  . The condition of sym-
metry indicates that in the cross-section x = 0 there is 
no cable displacement except for the broken one. Edg-
es of the broken cable are not loaded. Given the infi-
nite growth of coordinate x, internal resistance forces 
of cables and displacements of their cross-sections 
cannot grow infinitely. Formulate this as boundary 
conditions
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The last condition is provided by accepting Am = 0. 
Consider that dependencies (13–15) are constructed us-
ing cable numbers as a discrete coordinate axis. The 
boundary condition (16) has a form of a discontinu-
ous – delta function. Take this into consideration. Cal-
culate unknown constants in the form
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where Р – average internal force in rope cables.
Displacements of cross-sections of cables, internal 

forces and tangential stresses that occur in them when a 
single cable breaks depend on the number of cables and 
the properties of rope components according to expres-
sions (13–15). Figs. 9 and 10 show the dependencies of 
maximum values of coefficients of uneven distribution 
of forces K and values of distribution intensity of tangen-

Fig.  8. Cross-section of a tubular-shaped rubber-cable 
rope
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tial forces T in layers of rubber, located between cables 
on the number of cables in a rope M.

According to graphic dependencies (Figs. 9, 10), the 
maximum forces and tangential stresses are significantly 
dependent on the number of cables in a rope, if it is less 
than ten. This is a consequence of a local influence of a 
cable breakage on the stress-strain state of a tubular rope 
and the implementation of St. Venant’s principle about 
the locality of influence of local load changes or a com-
ponent design.

Consider the redistribution of forces across the width 
of a rope, depending on the number of cables in it. 
Fig. 11 shows the distribution of forces in a cross-section 
of a rope with different number of cables M in case of the 
middle cable breakage.

In the figure, the number of cables is conditionally 
unchanged and is nineteen. The actual number of cables 
which is from two to eighteen was supplemented by con-
ditional cables. Coefficients of forces concentration in 
imaginary cables are equal to zero. The figure shows that 
the growth of the number of cables in a tubular rope does 
not significantly affect the redistribution of forces be-
tween them. The same conclusion can be reached by ex-
amining problems regarding the quantitative part of the 
force perceived by adjacent cables from the value of the 
force that was perceived by the broken cable before its 
breakage. The indicated dependency is shown in Fig. 12.

The graph shows the quantitative dependency of a 
force part transmitted by the broken cable before its 
breakage from the number of cables in a rope. The mid-
dle cable takes place with an odd number of cables. The 
minimum number of cables in a rubber-cable rope is 
three. In this case, damage to one cable can lead to an 
additional load of only two cables. And just these cables 

take the load that occurred in the broken cable before its 
breakage. Accordingly, if there are only three cables in a 
tubular-shaped rope, cables adjacent to the broken one 
will take the entire load; coefficient K = 1. As the number 
of cables increases, the mentioned proportion decreases 
and does not get lower than 0.6.

Established dependencies of maximum values of coef-
ficients of uneven distribution of forces K, tangential forc-
es T in layers of rubber, located between the cables on the 
number of cables in a rope M, caused by the breakage of 
any cable of a flat rubber-cable rope, which gets a tubular 
shape, allow taking into account possible cable breakages 
during the design of lifting and transporting machines 
with a rubber-cable tractive rope of a tubular shape.

The basis of a rubber-cable rope is cables. They are 
made of a twisted cable system. This structure of a cable 
leads to a distribution of a twisting moment while stretch-
ing throughout cable length. To avoid a twisting moment 
in a rope an even number of cables is used. Cables of op-
posite twist directions are arranged alternately in the 
rope. The balance of a rope is disturbed due to cable 
breakage. The locality of redistribution of forces in case 
of cable breakage leads to localization and distributed 
rope twisting moment. Assume that a cable twisting mo-
ment is directly proportional to the internal force of its 
load with a coefficient of proportionality γ. Determine a 
value of intensity of an unbalanced moment of a rope in 
the cross-section of cable breakage and in the cross-sec-
tion which is remote from it by 0.5 m. Fig. 13 shows de-
pendencies of an unbalanced moment, related to an aver-

Fig. 9. Dependency of maximum values of coefficients of 
uneven distribution of forces K on the number of ca-
bles in a rope M

Fig. 10. Dependency of distribution intensity of tangen-
tial forces T in layers of rubber, located between ca-
bles on the number of cables in a rope М

Fig. 11. Distribution of coefficients of forces concentra-
tion in ropes with М cables in case of the middle cable 
breakage

Fig. 12. Relative load part, perceived by two cables ad-
joining the middle broken one in a rope with М cables
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age load force of cables on their number in a rope. The 
values of moments are shown for breakage cases of the 
extreme cable and the most distant cable from the edge.

The figure shows insignificant dependence of maxi-
mum intensity of rope twisting moment on the location 
of a cable in it (when an extreme or a middle cable is 
broken) in the breakage cross-section (curves 1 and 2). 
The placement of a broken cable in a rope affects the 
length of a part of stress-strain state perturbation more 
significantly (curves 3 and 4 ). Thus, in case of breakage 
of a cable that is the farthest from the edges of a rope, the 
intensity of the unbalanced moment in a rope system is 
close to 10% of its maximum value (curve 4 ). A similar 
indicator is practically twice as large for a case of an ex-
treme cable breakage (curve 3). This feature is fulfilled 
because the intensity of distributed twisting moments of 
a rope at a distance of 0.5 m is one order of magnitude 
lower than their values in a part of cable breakage.

This character of distribution of moments of imbal-
ance of system of cable ropes is caused by the placement 
scheme of cables with the opposite twisting direction. 
The twist direction determines the direction of twisting 
moment. Breakage of the extreme cable leads to a sig-
nificant increase in the internal tensile force of only one 
adjacent cable. Non-extreme cable breakage leads to 
growth of internal tensile forces of two adjacent cables. 
In this case, as shown above, adjacent cables perceive at 
least 60 % of a cable load, which it perceived before the 
breakage. A similar ratio is accurate in case of extreme 
cable breakage. As a result, the breakage of one cable sig-
nificantly increases twisting moments of adjacent cables.

According to a scheme of alternating placement of 
cables of the opposite direction the moments of one di-
rection increase substantially (at least by 60 %). It is pos-
sible to decrease the mentioned growth provided the 
forces are distributed between the cables of the opposite 
direction. This distribution can be arranged in such a way 
that, any cable is adjacent to two other cables of the op-

posite twist direction. This can be ensured by placing ca-
bles in a rope according to a scheme, where two cables of 
one direction are alternately placed with pairs of cables of 
another twisting direction. Fig. 14 shows the dependen-
cies similar to those shown in Fig. 13, but in a scheme of 
alternate placement of cable pairs of one twist direction.

According to Fig. 14, the placement of a broken cable 
in a rope more significantly affects the values of maxi-
mum intensity of a rope twisting moment (curves 1 and 
2). At the same time, the maximum values during the 
middle cable breakage are almost one third less. In case of 
the extreme cable breakage, this indicator reaches 50 %.

Reduction of a twisting moment in the cross-section 
of cable breakage is accompanied by an increase in length 
of a perturbation part. Thus, in case of extreme cable 
breakage, an unbalanced twisting moment at a distance 
of 0.5 m from the cross-section of breakage decreased to 
0.25γ. In case of middle cable breakage, practically, 
down to 0.1γ which is 2.5 and two times more than in a 
previous case. The specified confirms an increase in 
length of imbalance occurrence part to rope twisting.

The balancing of cable twisting moments happens 
due to the occurrence of additional deformations and 
stresses in a rubber of a rope. Reduction of intensities of 
maximum twisting moments of a rope leads to a decrease 
of stresses in rubber and improvement of its operation 
conditions. But keep in mind that in a rope with a scheme 
of alternate placement of cable pairs of one twisting di-
rection the number of cables must be a multiple of four.

Conclusion. Determination in analytical form of 
boundaries of a stress-strain state of a rope which gets a 
tubular shape, that occur including the case of broken 
cables, establishment of a mechanism of a rope balance 
disturbance to twisting, implementation of the system of 
cable placement in a rope as two cables of one twist di-
rection after two cables of an opposite twist direction, 
allow reasonable choosing of the parameters of a rope of 
lifting and transporting machines, in which a rope gets a 

Fig. 13. Relative twisting moment of a rope with М cables 
in the cross-section of cable breakage γ0 and γ0,5 at a 
distance of 0.5 m:
1 – in the cross-section of extreme cable breakage; 2 – in 
the cross-section of middle cable breakage; 3 – in the cross-
section at a distance of 0.5 m from the cross-section of ex-
treme cable breakage; 4 – in the cross-section at a distance 
of 0.5 m from the cross-section of middle cable breakage

Fig. 14. Relative twisting moment of a rope with М cables 
in the cross-section of cable breakage γ0 and γ0,5 at a 
distance of 0.5 m in a scheme of alternate placement 
of cable pairs of one twisting direction:
1 – in the cross-section of extreme cable breakage; 2 – in 
the cross-section of middle cable breakage; 3 – in the cross-
section at a distance of 0.5 m from the cross-section of ex-
treme cable breakage; 4 – in the cross-section at a distance 
of 0.5 m from the cross-section of middle cable breakage
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cylinder shape. This ensures its operation safety and 
contributes to solving the problem of ecological com-
patibility of underwater oil extraction.
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Мета.  Встановлення залежностей напружено-
деформованого стану гумотросового каната від 
його механічних характеристик і геометричних па-
раметрів ділянки надання плоскому канату цилін-
дричної форми з урахуванням впливу розривів тро-
сової основи.

Методика. Побудова методами механіки компо-
зитних матеріалів аналітичних моделей взаємодії 
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тросів у гумотросовому канаті як композитній 
структурі, утвореній з регулярно розташованих в 
одній площині паралельних тросів, що взаємодіють 
через шар гуми. Отримання в замкненому вигляді 
аналітичних залежностей для встановлення пара-
метрів напружено-деформованого стану каната на 
ділянці надання йому трубчатої форми, що дозво-
ляють визначати верхню й нижню межу напружень 
у тросах і гумовому прошарку каната. Математич-
ний опис процесу базується на засадах механіки 
шаруватих конструкцій із жорсткими та м’якими 
шарами.

Результати. Розроблені й досліджені дві матема-
тичні моделі, що дозволяють визначати межі на-
пружено-деформованого стану плоского гумотро-
сового каната, якому надана просторова форма ци-
ліндру. Отримані результати дають змогу з високим 
рівнем достовірності прогнозувати експлуатаційні 
властивості каната, включно з розривами тросів 
його армування.

Наукова новизна. Для крайніх значень характе-
ристик жорсткості гумового міжтросового шару 
отримані й розв’язані аналітичні залежності, що 
дозволяють визначати основні характеристики на-
пружено-деформованого стану каната, якому на 
обмеженій довжині надана трубчата форма, включ-
но й у разі розриву тросової основи.

Практична значимість. Можливість визначення 
меж напружено-деформованого стану каната, про-
гнозування його напруженого стану в разі розриву 
троса у процесі експлуатації дозволяє обґрунтовано 
обирати параметри підйомно-транспортних ма-
шин, на яких канату надається трубчата форма. Це 
підвищує рівень безпеки їх використання й сприяє 
розв’язанню проблеми екологічності видобутку на-
фти підводним способом за рахунок її відведення із 
зони пошкодження свердловини безпосередньо 
порожниною каната, якому надана циліндрична 
форма, та до якого приєднано масивну нафтоприй-
мальну конструкцію.

Ключові слова: плоский гумотросовий канат, пе-
рехідна ділянка каната, поздовжнє навантаження, 
розрив тросової основи, напружено-деформований 
стан, підйомно-транспортна машина

Напряженно-деформированное состояние 
резинотросового тягового органа трубчатой 

формы
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Цель. Установление зависимостей напряженно-
деформированного состояния резинотросового ка-
ната от его механических характеристик и геоме-
трических параметров участка придания плоскому 
канату цилиндрической формы с учетом влияния 
разрывов тросовой основы.

Методика. Построение методами механики ком-
позитных материалов аналитических моделей взаи-
модействия тросов в резинотросовом канате как ком-
позитной структуре, образованной из регулярно рас-
положенных в одной плоскости параллельных тросов, 
взаимодействующих через слой резины. Получение в 
замкнутом виде аналитических зависимостей для 
установления параметров напряженно-деформиро-
ванного состояния каната на участке придания ему 
трубчатой формы, позволяющих определять верхнюю 
и нижнюю границу напряжений в тросах и резиновой 
прослойке каната. Математическое описание процес-
са базируется на принципах механики слоистых кон-
струкций с жесткими и мягкими слоями.

Результаты. Разработаны и исследованы две ма-
тематические модели, позволяющие определять 
границы напряженно-деформированного состоя-
ния плоского резинотросового каната, которому 
придана пространственная форма цилиндра. Полу-
ченные результаты позволяют с высокой степенью 
достоверности прогнозировать эксплуатационные 
свойства каната, включительно с разрывами тросов 
его армировки.

Научная новизна. Для крайних значений харак-
теристик жесткости резинового межтросового слоя 
получены и решены аналитические зависимости, 
позволяющие определять основные характеристи-
ки напряженно-деформированного состояния ка-
ната, которому на ограниченной длине придана 
трубчатая форма, включительно и в случае разрыва 
тросовой основы.

Практическая значимость. Возможность опреде-
ления границ напряженно-деформированного со-
стояния каната, прогнозирование его напряженно-
го состояния в случае разрыва троса в процессе 
эксплуатации позволяет обоснованно выбирать 
параметры подъемно-транспортных машин, на ко-
торых канату придается трубчатая форма. Это по-
вышает уровень безопасности их использования и 
способствует решению проблемы экологичности 
добычи нефти подводным способом за счет ее от-
вода из зоны повреждения скважины непосред-
ственно полостью каната, которому придана ци-
линдрическая форма, и к которому присоединена 
массивная нефтеприемная конструкция.
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